Generate bipartite graphs using the Erdős-Rényi model
Passed to sample_bipartite_gnp().
Integer scalar, the number of bottom vertices.
Integer scalar, the number of top vertices.
Integer scalar, the number of edges for \(G(n,m)\) graphs.
Logical scalar, whether to create a directed graph. See also
the mode argument.
Character scalar, specifies how to direct the edges in directed graphs. If it is ‘out’, then directed edges point from bottom vertices to top vertices. If it is ‘in’, edges point from top vertices to bottom vertices. ‘out’ and ‘in’ do not generate mutual edges. If this argument is ‘all’, then each edge direction is considered independently and mutual edges might be generated. This argument is ignored for undirected graphs.
Real scalar, connection probability for \(G(n,p)\) graphs.
Similarly to unipartite (one-mode) networks, we can define the \(G(n,p)\), and \(G(n,m)\) graph classes for bipartite graphs, via their generating process. In \(G(n,p)\) every possible edge between top and bottom vertices is realized with probability \(p\), independently of the rest of the edges. In \(G(n,m)\), we uniformly choose \(m\) edges to realize.
Random graph models (games)
erdos.renyi.game(),
sample_(),
sample_bipartite(),
sample_chung_lu(),
sample_correlated_gnp(),
sample_correlated_gnp_pair(),
sample_degseq(),
sample_dot_product(),
sample_fitness(),
sample_fitness_pl(),
sample_forestfire(),
sample_gnm(),
sample_gnp(),
sample_grg(),
sample_growing(),
sample_hierarchical_sbm(),
sample_islands(),
sample_k_regular(),
sample_last_cit(),
sample_pa(),
sample_pa_age(),
sample_pref(),
sample_sbm(),
sample_smallworld(),
sample_traits_callaway(),
sample_tree()
## empty graph
sample_bipartite_gnp(10, 5, p = 0)
#> IGRAPH bdd2323 U--B 15 0 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from bdd2323:
## full graph
sample_bipartite_gnp(10, 5, p = 1)
#> IGRAPH aa71948 U--B 15 50 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from aa71948:
#> [1] 1--11 1--12 1--13 1--14 1--15 2--11 2--12 2--13 2--14 2--15
#> [11] 3--11 3--12 3--13 3--14 3--15 4--11 4--12 4--13 4--14 4--15
#> [21] 5--11 5--12 5--13 5--14 5--15 6--11 6--12 6--13 6--14 6--15
#> [31] 7--11 7--12 7--13 7--14 7--15 8--11 8--12 8--13 8--14 8--15
#> [41] 9--11 9--12 9--13 9--14 9--15 10--11 10--12 10--13 10--14 10--15
## random bipartite graph
sample_bipartite_gnp(10, 5, p = .1)
#> IGRAPH bc71472 U--B 15 2 -- Bipartite Gnp random graph
#> + attr: name (g/c), p (g/n), type (v/l)
#> + edges from bc71472:
#> [1] 1--13 3--14
## directed bipartite graph, G(n,m)
sample_bipartite_gnm(10, 5, m = 20, directed = TRUE, mode = "all")
#> IGRAPH 02f02ab D--B 15 20 -- Bipartite Gnm random graph
#> + attr: name (g/c), m (g/n), type (v/l)
#> + edges from 02f02ab:
#> [1] 4->11 9->11 3->13 10->13 2->14 5->14 6->14 10->14 3->15 7->15
#> [11] 13-> 3 15-> 3 12-> 4 15-> 5 11-> 6 12-> 6 11-> 7 15-> 7 11-> 9 12-> 9