|
as.kernelMatrix(<matrix>)
|
Assing kernelMatrix class to matrix objects |
|
couple()
|
Probabilities Coupling function |
|
csi-class Q R predgain truegain diagresidues,csi-method maxresiduals,csi-method pivots,csi-method predgain,csi-method truegain,csi-method Q,csi-method R,csi-method
|
Class "csi" |
|
csi(<matrix>)
|
Cholesky decomposition with Side Information |
|
rbfdot() polydot() tanhdot() vanilladot() laplacedot() besseldot() anovadot() splinedot()
|
Kernel Functions |
|
gausspr-class alpha,gausspr-method cross,gausspr-method error,gausspr-method kcall,gausspr-method kernelf,gausspr-method kpar,gausspr-method lev,gausspr-method type,gausspr-method alphaindex,gausspr-method xmatrix,gausspr-method ymatrix,gausspr-method scaling,gausspr-method
|
Class "gausspr" |
|
gausspr(<formula>) gausspr(<vector>) gausspr(<matrix>)
|
Gaussian processes for regression and classification |
|
inchol-class diagresidues maxresiduals pivots diagresidues,inchol-method maxresiduals,inchol-method pivots,inchol-method
|
Class "inchol" |
|
inchol()
|
Incomplete Cholesky decomposition |
|
income
|
Income Data |
|
inlearn(<numeric>)
|
Onlearn object initialization |
|
ipop-class primal,ipop-method dual,ipop-method how,ipop-method primal dual how
|
Class "ipop" |
|
ipop()
|
Quadratic Programming Solver |
|
kcca-class kcor xcoef ycoef kcor,kcca-method xcoef,kcca-method xvar,kcca-method ycoef,kcca-method yvar,kcca-method
|
Class "kcca" |
|
kcca(<matrix>)
|
Kernel Canonical Correlation Analysis |
|
rbfkernel-class polykernel-class vanillakernel-class tanhkernel-class anovakernel-class besselkernel-class laplacekernel-class splinekernel-class stringkernel-class fourierkernel-class kfunction-class kernel-class kpar,kernel-method
|
Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
|
kernelMatrix(<kernel>) kernelPol(<kernel>) kernelMult(<kernel>) kernelFast(<kernel>)
|
Kernel Matrix functions |
|
kfa-class alpha,kfa-method alphaindex,kfa-method kcall,kfa-method kernelf,kfa-method predict,kfa-method xmatrix,kfa-method
|
Class "kfa" |
|
kfa(<formula>) kfa(<matrix>)
|
Kernel Feature Analysis |
|
kha-class eig,kha-method kcall,kha-method kernelf,kha-method pcv,kha-method xmatrix,kha-method eskm,kha-method
|
Class "kha" |
|
kha(<formula>) kha(<matrix>)
|
Kernel Principal Components Analysis |
|
kkmeans(<formula>) kkmeans(<matrix>) kkmeans(<kernelMatrix>) kkmeans(<list>)
|
Kernel k-means |
|
kmmd-class kernelf,kmmd-method H0,kmmd-method AsympH0,kmmd-method Radbound,kmmd-method Asymbound,kmmd-method mmdstats,kmmd-method
|
Class "kqr" |
|
kmmd(<matrix>) kmmd(<kernelMatrix>) kmmd(<list>)
|
Kernel Maximum Mean Discrepancy. |
|
kpca-class rotated eig,kpca-method kcall,kpca-method kernelf,kpca-method pcv,kpca-method rotated,kpca-method xmatrix,kpca-method
|
Class "kpca" |
|
kpca(<formula>) kpca(<matrix>) kpca(<kernelMatrix>) kpca(<list>)
|
Kernel Principal Components Analysis |
|
kqr-class alpha,kqr-method cross,kqr-method error,kqr-method kcall,kqr-method kernelf,kqr-method kpar,kqr-method param,kqr-method alphaindex,kqr-method b,kqr-method xmatrix,kqr-method ymatrix,kqr-method scaling,kqr-method
|
Class "kqr" |
|
kqr(<formula>) kqr(<vector>) kqr(<matrix>) kqr(<kernelMatrix>) kqr(<list>)
|
Kernel Quantile Regression. |
|
ksvm-class SVindex alphaindex prob.model scaling prior show param b obj nSV coef,vm-method SVindex,ksvm-method alpha,ksvm-method alphaindex,ksvm-method cross,ksvm-method error,ksvm-method param,ksvm-method fitted,ksvm-method prior,ksvm-method prob.model,ksvm-method kernelf,ksvm-method kpar,ksvm-method lev,ksvm-method kcall,ksvm-method scaling,ksvm-method type,ksvm-method xmatrix,ksvm-method ymatrix,ksvm-method b,ksvm-method obj,ksvm-method nSV,ksvm-method
|
Class "ksvm" |
|
ksvm(<formula>) ksvm(<vector>) ksvm(<matrix>) ksvm(<kernelMatrix>) ksvm(<list>)
|
Support Vector Machines |
|
lssvm-class alpha,lssvm-method b,lssvm-method cross,lssvm-method error,lssvm-method kcall,lssvm-method kernelf,lssvm-method kpar,lssvm-method param,lssvm-method lev,lssvm-method type,lssvm-method alphaindex,lssvm-method xmatrix,lssvm-method ymatrix,lssvm-method scaling,lssvm-method nSV,lssvm-method
|
Class "lssvm" |
|
lssvm(<formula>) lssvm(<vector>) lssvm(<matrix>) lssvm(<kernelMatrix>) lssvm(<list>)
|
Least Squares Support Vector Machine |
|
musk
|
Musk data set |
|
onlearn-class alpha,onlearn-method b,onlearn-method buffer,onlearn-method fit,onlearn-method kernelf,onlearn-method kpar,onlearn-method predict,onlearn-method rho,onlearn-method rho show,onlearn-method type,onlearn-method xmatrix,onlearn-method buffer
|
Class "onlearn" |
|
onlearn(<onlearn>)
|
Kernel Online Learning algorithms |
|
plot(<ksvm>)
|
plot method for support vector object |
|
prc-class eig pcv eig,prc-method kcall,prc-method kernelf,prc-method pcv,prc-method xmatrix,prc-method
|
Class "prc" |
|
predict(<gausspr>)
|
predict method for Gaussian Processes object |
|
predict(<kqr>)
|
Predict method for kernel Quantile Regression object |
|
predict(<ksvm>)
|
predict method for support vector object |
|
promotergene
|
E. coli promoter gene sequences (DNA) |
|
ranking-class edgegraph convergence convergence,ranking-method edgegraph,ranking-method show,ranking-method
|
Class "ranking" |
|
ranking(<matrix>) ranking(<kernelMatrix>) ranking(<list>)
|
Ranking |
|
reuters
|
Reuters Text Data |
|
rvm-class RVindex mlike nvar RVindex,rvm-method alpha,rvm-method cross,rvm-method error,rvm-method kcall,rvm-method kernelf,rvm-method kpar,rvm-method lev,rvm-method mlike,rvm-method nvar,rvm-method type,rvm-method xmatrix,rvm-method ymatrix,rvm-method
|
Class "rvm" |
|
rvm(<formula>) rvm(<vector>) rvm(<matrix>) rvm(<list>)
|
Relevance Vector Machine |
|
sigest(<formula>) sigest(<matrix>)
|
Hyperparameter estimation for the Gaussian Radial Basis kernel |
|
spam
|
Spam E-mail Database |
|
specc-class centers size withinss centers,specc-method withinss,specc-method size,specc-method kernelf,specc-method
|
Class "specc" |
|
specc(<formula>) specc(<matrix>) specc(<kernelMatrix>) specc(<list>)
|
Spectral Clustering |
|
spirals
|
Spirals Dataset |
|
stringdot()
|
String Kernel Functions |
|
ticdata
|
The Insurance Company Data |
|
vm-class cross alpha error type kernelf xmatrix ymatrix lev kcall alpha,vm-method cross,vm-method error,vm-method fitted,vm-method kernelf,vm-method kpar,vm-method lev,vm-method kcall,vm-method type,vm-method xmatrix,vm-method ymatrix,vm-method
|
Class "vm" |