lssvm-class.RdThe Gaussian Processes object
Objects can be created by calls of the form new("lssvm", ...).
or by calling the lssvm function
kernelf:Object of class "kfunction" contains
the kernel function used
kpar:Object of class "list" contains the
kernel parameter used
param:Object of class "list" contains the
regularization parameter used.
kcall:Object of class "call" contains the used
function call
type:Object of class "character" contains
type of problem
coef:Object of class "ANY" contains
the model parameter
terms:Object of class "ANY" contains the
terms representation of the symbolic model used (when using a formula)
xmatrix:Object of class "matrix" containing
the data matrix used
ymatrix:Object of class "output" containing the
response matrix
fitted:Object of class "output" containing the
fitted values
b:Object of class "numeric" containing the
offset
lev:Object of class "vector" containing the
levels of the response (in case of classification)
scaling:Object of class "ANY" containing the
scaling information performed on the data
nclass:Object of class "numeric" containing
the number of classes (in case of classification)
alpha:Object of class "listI" containing the
computes alpha values
alphaindexObject of class "list" containing
the indexes for the alphas in various classes (in multi-class problems).
error:Object of class "numeric" containing the
training error
cross:Object of class "numeric" containing the
cross validation error
n.action:Object of class "ANY" containing the
action performed in NA
nSV:Object of class "numeric" containing the
number of model parameters
signature(object = "lssvm"): returns the alpha
vector
signature(object = "lssvm"): returns the cross
validation error
signature(object = "lssvm"): returns the
training error
signature(object = "vm"): returns the fitted values
signature(object = "lssvm"): returns the call performed
signature(object = "lssvm"): returns the
kernel function used
signature(object = "lssvm"): returns the kernel
parameter used
signature(object = "lssvm"): returns the regularization
parameter used
signature(object = "lssvm"): returns the
response levels (in classification)
signature(object = "lssvm"): returns the type
of problem
signature(object = "ksvm"): returns the
scaling values
signature(object = "lssvm"): returns the
data matrix used
signature(object = "lssvm"): returns the
response matrix used
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
#> Using automatic sigma estimation (sigest) for RBF or laplace kernel
test
#> Least Squares Support Vector Machine object of class "lssvm"
#>
#> problem type : classification
#> parameter : tau = 0.01
#>
#> Gaussian Radial Basis kernel function.
#> Hyperparameter : sigma = 1.23831652091826
#>
#> Number of data points used for training : 49
#> Training error : 0.872483
alpha(test)
#> [,1] [,2] [,3]
#> [1,] -249.4674408 537.6808843 -288.213444
#> [2,] -53.6237095 12.0722884 41.551421
#> [3,] 87.5298574 -40.8226261 -46.707231
#> [4,] 866.4171632 -489.4987431 -376.918420
#> [5,] -456.5714804 656.2924607 -199.720980
#> [6,] 431.6853600 123.6639801 -555.349340
#> [7,] 36.2795896 149.0955959 -185.375186
#> [8,] -126.3246709 -345.0103908 471.335062
#> [9,] 595.7168577 -1063.0516054 467.334748
#> [10,] -324.1581825 540.7280357 -216.569853
#> [11,] -21.9289818 -49.6864666 71.615448
#> [12,] -553.4952812 1328.8536176 -775.358336
#> [13,] -345.6095546 -54.7433562 400.352911
#> [14,] -121.6847131 624.3491461 -502.664433
#> [15,] 158.6313903 -225.3348889 66.703499
#> [16,] 221.5774389 -176.4932470 -45.084192
#> [17,] 3.6668477 -2.3395646 -1.327283
#> [18,] -17.4082623 16.4041754 1.004087
#> [19,] 87.7259559 -127.7395515 40.013596
#> [20,] 223.2992966 -17.0291710 -206.270126
#> [21,] 287.2470833 -432.4277626 145.180679
#> [22,] 67.5836525 -359.4043651 291.820713
#> [23,] -21.8216719 -226.1714428 247.993115
#> [24,] 141.5005198 -117.4922291 -24.008291
#> [25,] -300.4892006 336.6331954 -36.143995
#> [26,] -280.4537624 316.2110201 -35.757258
#> [27,] -24.6020002 91.5704874 -66.968487
#> [28,] -198.9784672 -0.7377473 199.716215
#> [29,] 60.2855672 -206.9306462 146.645079
#> [30,] -50.4645463 86.3254212 -35.860875
#> [31,] -54.3274579 34.7421005 19.585357
#> [32,] 524.8143695 -64.4445128 -460.369857
#> [33,] -472.6604713 421.8127551 50.847716
#> [34,] 0.1231057 -1.7834319 1.660326
#> [35,] 336.2928622 -596.7505475 260.457685
#> [36,] -852.6342445 -22.9601035 875.594348
#> [37,] 1104.6687231 -969.5082315 -135.160492
#> [38,] 179.1141601 -564.3234923 385.209332
#> [39,] 100.8452465 -75.9141190 -24.931128
#> [40,] 19.3359474 -33.3525841 14.016637
#> [41,] 177.7290460 -232.4282923 54.699246
#> [42,] -4.2449106 -10.1658074 14.410718
#> [43,] -37.8896396 79.8721466 -41.982507
#> [44,] -17.0978742 41.5041592 -24.406285
#> [45,] 13.6187448 -16.2811524 2.662408
#> [46,] -39.1561852 109.8293031 -70.673118
#> [47,] 66.7208559 -31.2009358 -35.519920
#> [48,] 48.8589706 -79.4821070 30.623136
#> [49,] -28.7182776 -10.5575107 39.275788
error(test)
#> [1] 0.8724832
lev(test)
#> [1] "setosa" "versicolor" "virginica"