R/remove_labels.R
remove_labels.RdUse remove_var_label() to remove variable label, remove_val_labels()
to remove value labels, remove_user_na() to remove user defined missing
values (na_values and na_range) and remove_labels() to remove all.
remove_labels(
x,
user_na_to_na = FALSE,
keep_var_label = FALSE,
user_na_to_tagged_na = FALSE
)
remove_var_label(x)
remove_val_labels(x)
remove_user_na(x, user_na_to_na = FALSE, user_na_to_tagged_na = FALSE)A vector, a data frame or a survey design.
Convert user defined missing values into NA?
Keep variable label?
Convert user defined missing values into
tagged NA? It could be applied only to numeric vectors. Note that integer
labelled vectors will be converted to double labelled vectors.
Be careful with remove_user_na() and remove_labels(), user defined
missing values will not be automatically converted to NA, except if you
specify user_na_to_na = TRUE.
user_na_to_na(x) is an equivalent of
remove_user_na(x, user_na_to_na = TRUE).
If you prefer to convert variables with value labels into factors, use
to_factor() or use unlabelled().
x <- labelled_spss(1:10, c(Good = 1, Bad = 8), na_values = c(9, 10))
var_label(x) <- "A variable"
x
#> <labelled_spss<integer>[10]>: A variable
#> [1] 1 2 3 4 5 6 7 8 9 10
#> Missing values: 9, 10
#>
#> Labels:
#> value label
#> 1 Good
#> 8 Bad
remove_labels(x)
#> [1] 1 2 3 4 5 6 7 8 9 10
remove_labels(x, user_na_to_na = TRUE)
#> [1] 1 2 3 4 5 6 7 8 NA NA
remove_user_na(x, user_na_to_na = TRUE)
#> <labelled<integer>[10]>: A variable
#> [1] 1 2 3 4 5 6 7 8 NA NA
#>
#> Labels:
#> value label
#> 1 Good
#> 8 Bad
remove_user_na(x, user_na_to_tagged_na = TRUE)
#> ℹ `x` has been converted into a double vector.
#> <labelled<double>[10]>: A variable
#> [1] 1 2 3 4 5 6 7 8 NA(a) NA(b)
#>
#> Labels:
#> value label
#> 1 Good
#> 8 Bad