marginal.plot.RdDisplay marginal distributions of several variables, which may be numeric and/or categorical, on one plot.
marginal.plot(x,
data = NULL,
groups = NULL,
reorder = !is.table(x),
plot.points = FALSE,
ref = TRUE, cut = 0,
origin = 0, <!-- %ylim = c(0, NA), -->
xlab = NULL, ylab = NULL,
type = c("p", if (is.null(groups)) "h"),
...,
subset = TRUE,
as.table = TRUE,
subscripts = TRUE,
default.scales = list(
relation = "free",
abbreviate = TRUE, minlength = 5,
rot = 30, cex = 0.75, tick.number = 3,
y = list(draw = FALSE)),
layout = NULL,
lattice.options = list(
layout.heights = list(
axis.xlab.padding = list(x = 0),
xlab.key.padding = list(x = 0))))a data frame or table, or a formula of which the first term
is a data frame or table. Otherwise coerced with
as.data.frame.
an optional data source in which groups and subset may be be evaluated.
term, to be evaluated in data, that is used as a
grouping variable.
whether to reorder factor variables by frequency.
data subset expression, evaluated in data.
passed to panel.densityplot.
passed to panel.dotplot.
see xyplot.
see xyplot.
passed to panel.densityplot and/or
panel.dotplot.
In the case of mixed numeric and categorical variables,
the trellis objects from dotplot() and densityplot()
are merged.
a trellis object.
enviro <- environmental
## make an ordered factor (so it will not be reordered)
enviro$smell <- cut(enviro$ozone, breaks = c(0, 30, 50, Inf),
labels = c("ok", "hmmm", "yuck"), ordered = TRUE)
marginal.plot(enviro)
## using groups
enviro$is.windy <- factor(enviro$wind > 10,
levels = c(TRUE, FALSE), labels = c("windy", "calm"))
marginal.plot(enviro[,1:5], data = enviro, groups = is.windy,
auto.key = list(lines = TRUE))
## support for tables
marginal.plot(Titanic)
## table with groups
marginal.plot(~ Titanic, data = Titanic, groups = Survived,
type = "b", auto.key = list(title = "Survived?"))