Fit one or more Exploratory Factor Analysis (EFA) model(s).

efa(data = NULL, nfactors = 1L, sample.cov = NULL, sample.nobs = NULL,
    rotation = "geomin", rotation.args = list(), ov.names = NULL,
    bounds = "pos.var", ..., output = "efa")

Arguments

data

A data frame containing the observed variables we need for the EFA. If only a subset of the observed variables is needed, use the ov.names argument.

nfactors

Integer or Integer vector. The desired number of factors to extract. Can be a single number, or a vector of numbers (e.g., nfactors = 1:4.), For each different number, a model is fitted.

sample.cov

Numeric matrix. A sample variance-covariance matrix. The rownames and/or colnames must contain the observed variable names. Unlike sem and CFA, the matrix may be a correlation matrix.

sample.nobs

Number of observations if the full data frame is missing and only the sample variance-covariance matrix is given.

rotation

Character. The rotation method to be used. Possible options are varimax, quartimax, orthomax, oblimin, quartimin, geomin, promax, entropy, mccammon, infomax, tandem1, tandem2, oblimax, bentler, simplimax, target.strict, target (alias for pst), pst (=partially specified target), cf, crawford-ferguson, cf-quartimax, cf-varimax, cf-equamax, cf-parsimax, cf-facparsim, biquartimin, bigeomin. The latter two are for bifactor rotation only. The rotation algorithms (except promax and target) are similar to those from the GPArotation package, but have been reimplemented for better control. The promax method is taken from the stats package. The target.strict method is equal to the target method in the GPArotation package. The target method is in fact the pst method where all non-zero elements (in the target matrix) are ignored.

rotation.args

List. Options related to the rotation algorithm. The default options (and their alternatives) are orthogonal = FALSE, row.weights = "default" (or "kaiser", "cureton.mulaik" or "none"), std.ov = TRUE, algorithm = "gpa" (or "pairwise"), rstarts = 30, gpa.tol = 1e-05, tol = 1e-08, max.iter = 10000L, warn = FALSE, verbose = FALSE, reflect = TRUE, order.lv.by = "index" (or "sumofsquares" or "none"). Other options are specific for a particular rotation criterion: geomin.epsilon = 0.001, orthomax.gamma = 1, promax.kappa = 4, cf.gamma = 0, and oblimin.gamma = 0.

ov.names

Character vector. The variables names that are needed for the EFA. Should be a subset of the variables names in the data.frame. By default (if NULL), all the variables in the data are used.

bounds

Per default, bounds = "pos.var" forces all variances of both observed and latent variables to be strictly nonnegative. See the entry in lavOptions for more options.

...

Aditional options to be passed to lavaan, using 'name = value'. See lavOptions for a complete list.

output

Character. If "efa" (the default), the output mimics the typical output of an EFA. If "lavaan", a lavaan object returned. The latter is only possible if nfactors contains a single (integer) number.

Details

The efa function is essentially a wrapper around the lavaan function. It generates the model syntax (for a given number of factors) and then calls lavaan() treating the factors as a single block that should be rotated. The function only supports a single group. Categorical data is handled as usual by first computing an appropriate (e.g., tetrachoric or polychoric) correlation matrix, which is then used as input for the EFA. There is also (limited) support for twolevel data. The same number of factors is then extracted at the within and the between level. The promax rotation method (taken from the stats package) is only provided for convenience. Because promax is a two-step algorithm (first varimax, then oblique rotation to get simple structure), it does not use the gpa or pairwise rotation algorithms, and as a result, no standard errors are provided.

Value

If output = "lavaan", an object of class lavaan. If output = "efa", a list of class efaList for which a print(), summary() and fitMeasures() method are available. Because we added the (standardized) loadings as an extra element, the loadings function (which is not a generic function) from the stats package will also work on efaList objects.

See also

summary.efaList for a summary method if the output is of class efaList.

Examples

## The famous Holzinger and Swineford (1939) example
fit <- efa(data = HolzingerSwineford1939, 
           ov.names = paste("x", 1:9, sep = ""),
           nfactors = 1:3,
           rotation = "geomin",
           rotation.args = list(geomin.epsilon = 0.01, rstarts = 1))
#> Warning: lavaan->lav_model_vcov():  
#>    The variance-covariance matrix of the estimated parameters (vcov) does not 
#>    appear to be positive definite! The smallest eigenvalue (= -2.108827e-03) 
#>    is smaller than zero. This may be a symptom that the model is not 
#>    identified.
#> Warning: lavaan->lav_model_vcov():  
#>    The variance-covariance matrix of the estimated parameters (vcov) does not 
#>    appear to be positive definite! The smallest eigenvalue (= -4.436901e-02) 
#>    is smaller than zero. This may be a symptom that the model is not 
#>    identified.
summary(fit, nd = 3L, cutoff = 0.2, dot.cutoff = 0.05)
#> This is lavaan 0.6-20 -- running exploratory factor analysis
#> 
#>   Estimator                                         ML
#>   Rotation method                       GEOMIN OBLIQUE
#>   Geomin epsilon                                  0.01
#>   Rotation algorithm (rstarts)                 GPA (1)
#>   Standardized metric                             TRUE
#>   Row weights                                     None
#> 
#>   Number of observations                           301
#> 
#> Overview models:
#>                     aic      bic    sabic   chisq df pvalue   cfi rmsea
#>   nfactors = 1 7738.448 7805.176 7748.091 312.264 27  0.000 0.677 0.187
#>   nfactors = 2 7572.491 7668.876 7586.418 130.306 19  0.000 0.874 0.140
#>   nfactors = 3 7479.081 7601.416 7496.758  22.897 12  0.029 0.988 0.055
#> 
#> Eigenvalues correlation matrix:
#> 
#>     ev1     ev2     ev3     ev4     ev5     ev6     ev7     ev8     ev9 
#>   3.216   1.639   1.365   0.699   0.584   0.500   0.473   0.286   0.238 
#> 
#> Number of factors:  1 
#> 
#> Standardized loadings: (* = significant at 1% level)
#> 
#>        f1       unique.var   communalities
#> x1  0.438*           0.808           0.192
#> x2  0.220*           0.951           0.049
#> x3  0.223*           0.950           0.050
#> x4  0.848*           0.281           0.719
#> x5  0.841*           0.293           0.707
#> x6  0.838*           0.298           0.702
#> x7      .*           0.967           0.033
#> x8  0.201*           0.960           0.040
#> x9  0.307*           0.906           0.094
#> 
#>                            f1
#> Sum of squared loadings 2.586
#> Proportion of total     1.000
#> Proportion var          0.287
#> Cumulative var          0.287
#> 
#> Number of factors:  2 
#> 
#> Standardized loadings: (* = significant at 1% level)
#> 
#>        f1      f2       unique.var   communalities
#> x1  0.261*  0.430*           0.673           0.327
#> x2      .   0.251*           0.906           0.094
#> x3          0.455*           0.783           0.217
#> x4  0.850*                   0.274           0.726
#> x5  0.867*                   0.264           0.736
#> x6  0.824*                   0.302           0.698
#> x7          0.447*           0.802           0.198
#> x8      .   0.626*           0.630           0.370
#> x9          0.732*           0.458           0.542
#> 
#>                               f1    f2 total
#> Sum of sq (obliq) loadings 2.281 1.628 3.909
#> Proportion of total        0.584 0.416 1.000
#> Proportion var             0.253 0.181 0.434
#> Cumulative var             0.253 0.434 0.434
#> 
#> Factor correlations: (* = significant at 1% level)
#> 
#>        f1      f2 
#> f1  1.000         
#> f2  0.331*  1.000 
#> 
#> Number of factors:  3 
#> 
#> Standardized loadings: (* = significant at 1% level)
#> 
#>        f1     f2     f3      unique.var   communalities
#> x1  0.604      .                  0.513           0.487
#> x2  0.507             .           0.749           0.251
#> x3  0.691      .                  0.543           0.457
#> x4         0.839                  0.279           0.721
#> x5      .  0.887                  0.243           0.757
#> x6      .  0.806                  0.305           0.695
#> x7      .         0.726           0.502           0.498
#> x8      .         0.703           0.469           0.531
#> x9  0.368         0.463           0.543           0.457
#> 
#>                               f2    f1    f3 total
#> Sum of sq (obliq) loadings 2.226 1.345 1.284 4.855
#> Proportion of total        0.458 0.277 0.264 1.000
#> Proportion var             0.247 0.149 0.143 0.539
#> Cumulative var             0.247 0.397 0.539 0.539
#> 
#> Factor correlations: (* = significant at 1% level)
#> 
#>        f1     f2     f3
#> f1  1.000              
#> f2  0.327  1.000       
#> f3  0.278  0.230  1.000
#> 
fitMeasures(fit, fit.measures = "all")
#>                          nfct=1    nfct=2    nfct=3
#> npar                     17.000    26.000    33.000
#> fmin                      0.519     0.216     0.038
#> chisq                   312.264   130.306    22.897
#> df                       27.000    19.000    12.000
#> pvalue                    0.000     0.000     0.029
#> baseline.chisq          918.852   918.852   918.852
#> baseline.df              36.000    36.000    36.000
#> baseline.pvalue           0.000     0.000     0.000
#> cfi                       0.677     0.874     0.988
#> tli                       0.569     0.761     0.963
#> nnfi                      0.569     0.761     0.963
#> rfi                       0.547     0.731     0.925
#> nfi                       0.660     0.858     0.975
#> pnfi                      0.495     0.453     0.325
#> ifi                       0.680     0.876     0.988
#> rni                       0.677     0.874     0.988
#> logl                  -3851.224 -3760.245 -3706.541
#> unrestricted.logl     -3695.092 -3695.092 -3695.092
#> aic                    7738.448  7572.491  7479.081
#> bic                    7805.176  7668.876  7601.416
#> ntotal                  301.000   301.000   301.000
#> bic2                   7748.091  7586.418  7496.758
#> rmsea                     0.187     0.140     0.055
#> rmsea.ci.lower            0.169     0.117     0.017
#> rmsea.ci.upper            0.206     0.163     0.089
#> rmsea.ci.level            0.900     0.900     0.900
#> rmsea.pvalue              0.000     0.000     0.365
#> rmsea.close.h0            0.050     0.050     0.050
#> rmsea.notclose.pvalue     1.000     1.000     0.120
#> rmsea.notclose.h0         0.080     0.080     0.080
#> rmr                       0.169     0.096     0.022
#> rmr_nomean                0.169     0.096     0.022
#> srmr                      0.143     0.076     0.017
#> srmr_bentler              0.143     0.076     0.017
#> srmr_bentler_nomean       0.143     0.076     0.017
#> crmr                      0.160     0.085     0.019
#> crmr_nomean               0.160     0.085     0.019
#> srmr_mplus                0.143     0.076     0.017
#> srmr_mplus_nomean         0.143     0.076     0.017
#> cn_05                    39.666    70.630   277.408
#> cn_01                    46.269    84.599   345.648
#> gfi                       0.792     0.900     0.983
#> agfi                      0.653     0.763     0.938
#> pgfi                      0.475     0.380     0.262
#> mfi                       0.623     0.831     0.982
#> ecvi                      1.150     0.606     0.295

# target rotation
target <- matrix(0, 9, 3)
target[1:3, 1] <- 1
target[4:6, 2] <- 1
target[7:9, 3] <- 1
fit2 <- efa(data = HolzingerSwineford1939,
            ov.names = paste("x", 1:9, sep = ""), 
            nfactors = 3,
            rotation = "target",
            rotation.args = list(target = target))
#> Warning: lavaan->lav_model_vcov():  
#>    The variance-covariance matrix of the estimated parameters (vcov) does not 
#>    appear to be positive definite! The smallest eigenvalue (= -2.108827e-03) 
#>    is smaller than zero. This may be a symptom that the model is not 
#>    identified.
#> Warning: lavaan->lav_model_vcov():  
#>    The variance-covariance matrix of the estimated parameters (vcov) does not 
#>    appear to be positive definite! The smallest eigenvalue (= -3.021570e-02) 
#>    is smaller than zero. This may be a symptom that the model is not 
#>    identified.
summary(fit2)
#> This is lavaan 0.6-20 -- running exploratory factor analysis
#> 
#>   Estimator                                         ML
#>   Rotation method                          PST OBLIQUE
#>   Rotation algorithm (rstarts)                GPA (30)
#>   Standardized metric                             TRUE
#>   Row weights                                     None
#> 
#>   Number of observations                           301
#> 
#> Fit measures:
#>                     aic      bic    sabic  chisq df pvalue   cfi rmsea
#>   nfactors = 3 7479.081 7601.416 7496.758 22.897 12  0.029 0.988 0.055
#> 
#> Eigenvalues correlation matrix:
#> 
#>     ev1     ev2     ev3     ev4     ev5     ev6     ev7     ev8     ev9 
#>   3.216   1.639   1.365   0.699   0.584   0.500   0.473   0.286   0.238 
#> 
#> Standardized loadings: (* = significant at 1% level)
#> 
#>        f1     f2     f3      unique.var   communalities
#> x1  0.589      .                  0.513           0.487
#> x2  0.510                         0.749           0.251
#> x3  0.676                         0.543           0.457
#> x4         0.840                  0.279           0.721
#> x5         0.890                  0.243           0.757
#> x6         0.805                  0.305           0.695
#> x7      .         0.736           0.502           0.498
#> x8                0.732           0.469           0.531
#> x9  0.309         0.505           0.543           0.457
#> 
#>                               f2    f3    f1 total
#> Sum of sq (obliq) loadings 2.216 1.371 1.267 4.855
#> Proportion of total        0.457 0.282 0.261 1.000
#> Proportion var             0.246 0.152 0.141 0.539
#> Cumulative var             0.246 0.399 0.539 0.539
#> 
#> Factor correlations: (* = significant at 1% level)
#> 
#>        f1      f2      f3 
#> f1  1.000                 
#> f2  0.340*  1.000         
#> f3  0.314*  0.260*  1.000 
#>