PCA of random-effects variance-covariance estimates

rePCA(x)

Arguments

x

a merMod object

Value

a prcomplist object

Details

Perform a Principal Components Analysis (PCA) of the random-effects variance-covariance estimates from a fitted mixed-effects model. This allows the user to detect and diagnose overfitting problems in the random effects model (see Bates et al. 2015 for details).

Author

Douglas Bates

See also

References

  • Douglas Bates, Reinhold Kliegl, Shravan Vasishth, and Harald Baayen. Parsimonious Mixed Models. arXiv:1506.04967 [stat], June 2015. arXiv: 1506.04967.

Examples

  fm1 <- lmer(Reaction~Days+(Days|Subject), sleepstudy)
  rePCA(fm1)
#> $Subject
#> Standard deviations (1, .., p=2):
#> [1] 0.9668680 0.2308798
#> 
#> Rotation (n x k) = (2 x 2):
#>             [,1]        [,2]
#> [1,] -0.99986158 -0.01663769
#> [2,] -0.01663769  0.99986158
#> 
#> attr(,"class")
#> [1] "prcomplist"