utilities.Rd
The print
, summary
methods (including the
print
for the summary()
result) in lme4 are
modular, using about ten small utility functions. Other packages,
building on lme4 can use the same utilities for ease of
programming and consistency of output.
Notably see the Examples.
llikAIC()
extracts the log likelihood, AIC, and related
statics from a Fitted LMM.
formatVC()
“format()”s the VarCorr
matrix of the
random effects – for print()
ing and
show()
ing; it is also the “workhorse” of
.prt.VC()
, and returns a character
matrix.
llikAIC(object, devianceFUN = devCrit, chkREML = TRUE,
devcomp = object@devcomp)
methTitle(dims)
.prt.methTit(mtit, class)
.prt.family (famL)
.prt.resids (resids, digits, title = "Scaled residuals:", ...)
.prt.call (call, long = TRUE)
.prt.aictab (aictab, digits = 1)
.prt.grps (ngrps, nobs)
.prt.warn (optinfo, summary = FALSE, ...)
.prt.VC (varcor, digits, comp = "Std.Dev.", corr = any(comp == "Std.Dev."),
formatter = format, ...)
formatVC(varcor, digits = max(3, getOption("digits") - 2),
comp = "Std.Dev.", corr = any(comp == "Std.Dev."),
formatter = format,
useScale = attr(varcor, "useSc"), ...)
a LMM model fit
the function to be used for computing the deviance; should not be changed for lme4 created objects.
optional logical indicating if object
maybe a REML
fit.
for lme4 always the equivalent of
object@devcomp
; here a list
for lme4 always the equivalent of
object@devcomp$dims
, a named vector or list with components
"GLMM"
, "NLMM"
, "REML"
, and "nAGQ"
of
which the first two are logical
scalars, and the latter
two typically are FALSE
or numeric
.
the result of methTitle(object)
typically class(object)
.
a list
with components family
and
link
, each a character
string; note that standard
R family
objects can be used directly, as well.
numeric vector of model residuals
.
non-negative integer of (significant) digits to print minimally.
character
string.
optional arguments passed on, e.g., to residuals()
.
the call
of the model fit; e.g., available
via (generic) function getCall()
.
logical indicating if the output may be long, e.g.,
printing the control
part of the call if there is one.
typically the result of VarCorr()
.
optional character
vector of length 1 or 2,
containing "Std.Dev."
and/or "Variance"
, indicating the
columns to use.
logical
indicating if correlations or
covariances should be used for vector random effects.
a function
used for formatting the numbers.
integer (vector), typically the result of
ngrps(object)
.
integer; the number of observations, e.g., the result
of nobs
.
llikAIC()
returns a list
with components
which is logLik(object)
, and
a “table” of AIC
, BIC
,
logLik
, deviance and df.residual()
values.
## Create a few "lme4 standard" models ------------------------------
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
fmM <- update(fm1, REML=FALSE) # -> Maximum Likelihood
fmQ <- update(fm1, . ~ Days + (Days | Subject))
gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
data = cbpp, family = binomial)
gmA <- update(gm1, nAGQ = 5)
(lA1 <- llikAIC(fm1))
#> $logLik
#> 'log Lik.' -871.8141 (df=6)
#>
#> $AICtab
#> REML
#> 1743.628
#>
(lAM <- llikAIC(fmM))
#> $logLik
#> 'log Lik.' -875.9697 (df=6)
#>
#> $AICtab
#> AIC BIC logLik -2*log(L) df.resid
#> 1763.9393 1783.0971 -875.9697 1751.9393 174.0000
#>
(lAg <- llikAIC(gmA))
#> $logLik
#> 'log Lik.' -50.00568 (df=5)
#>
#> $AICtab
#> AIC BIC logLik -2*log(L) df.resid
#> 110.01137 120.13813 -50.00568 100.01137 51.00000
#>
(m1 <- methTitle(fm1 @ devcomp $ dims))
#> [1] "Linear mixed model fit by REML"
(mM <- methTitle(fmM @ devcomp $ dims))
#> [1] "Linear mixed model fit by maximum likelihood "
(mG <- methTitle(gm1 @ devcomp $ dims))
#> [1] "Generalized linear mixed model fit by maximum likelihood (Laplace Approximation)"
(mA <- methTitle(gmA @ devcomp $ dims))
#> [1] "Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature, nAGQ = 5)"
.prt.methTit(m1, class(fm1))
#> Linear mixed model fit by REML ['lmerMod']
.prt.methTit(mA, class(gmA))
#> Generalized linear mixed model fit by maximum likelihood (Adaptive
#> Gauss-Hermite Quadrature, nAGQ = 5) [glmerMod]
.prt.family(gaussian())
#> Family: gaussian ( identity )
.prt.family(binomial())
#> Family: binomial ( logit )
.prt.family( poisson())
#> Family: poisson ( log )
.prt.resids(residuals(fm1), digits = 4)
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -101.179 -11.859 0.592 11.859 132.547
#>
.prt.resids(residuals(fmM), digits = 2)
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -100.9 -11.9 0.7 11.9 132.5
#>
.prt.call(getCall(fm1))
#> Formula: Reaction ~ Days + (Days | Subject)
#> Data: sleepstudy
.prt.call(getCall(gm1))
#> Formula: cbind(incidence, size - incidence) ~ period + (1 | herd)
#> Data: cbpp
.prt.aictab ( lA1 $ AICtab ) # REML
#> REML criterion at convergence: 1743.6
.prt.aictab ( lAM $ AICtab ) # ML --> AIC, BIC, ...
#> AIC BIC logLik -2*log(L) df.resid
#> 1763.9 1783.1 -876.0 1751.9 174
V1 <- VarCorr(fm1)
m <- formatVC(V1)
stopifnot(is.matrix(m), is.character(m), ncol(m) == 4)
print(m, quote = FALSE) ## prints all but the first line of .prt.VC() below:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.7407
#> Days 5.9221 0.066
#> Residual 25.5918
.prt.VC( V1, digits = 4)
#> Random effects:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.741
#> Days 5.922 0.07
#> Residual 25.592
## Random effects:
## Groups Name Std.Dev. Corr
## Subject (Intercept) 24.740
## Days 5.922 0.07
## Residual 25.592
p1 <- capture.output(V1)
p2 <- capture.output( print(m, quote=FALSE) )
pX <- capture.output( .prt.VC(V1, digits = max(3, getOption("digits")-2)) )
stopifnot(identical(p1, p2),
identical(p1, pX[-1])) # [-1] : dropping 1st line
(Vq <- VarCorr(fmQ)) # default print()
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.7407
#> Days 5.9221 0.066
#> Residual 25.5918
print(Vq, comp = c("Std.Dev.", "Variance"))
#> Groups Name Std.Dev. Variance Corr
#> Subject (Intercept) 24.7407 612.100
#> Days 5.9221 35.072 0.066
#> Residual 25.5918 654.940
print(Vq, comp = c("Std.Dev.", "Variance"), corr=FALSE)
#> Groups Name Std.Dev. Variance Cov
#> Subject (Intercept) 24.7407 612.100
#> Days 5.9221 35.072 9.604
#> Residual 25.5918 654.940
print(Vq, comp = "Variance")
#> Groups Name Variance Cov
#> Subject (Intercept) 612.100
#> Days 35.072 9.604
#> Residual 654.940
.prt.grps(ngrps = ngrps(fm1),
nobs = nobs (fm1))
#> Number of obs: 180, groups: Subject, 18
## --> Number of obs: 180, groups: Subject, 18
.prt.warn(fm1 @ optinfo) # nothing .. had no warnings
.prt.warn(fmQ @ optinfo) # (ditto)