Extracts the contrasts which defines the LS-mean hypothesis tests.
# S3 method for class 'ls_means'
show_tests(object, fractions = FALSE, names = TRUE, ...)a list of contrast matrices; one matrix for each model term.
ls_means for computation of
LS-means and show_tests for anova
objects.
data("cake", package="lme4")
model <- lmer(angle ~ recipe * temp + (1|recipe:replicate), cake)
# LS-means:
(lsm <- ls_means(model))
#> Least Squares Means table:
#>
#> Estimate Std. Error df t value lower upper Pr(>|t|)
#> recipeA 33.1222 1.7368 42 19.070 29.6172 36.6273 < 2.2e-16 ***
#> recipeB 31.6444 1.7368 42 18.220 28.1394 35.1495 < 2.2e-16 ***
#> recipeC 31.6000 1.7368 42 18.194 28.0949 35.1051 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Confidence level: 95%
#> Degrees of freedom method: Satterthwaite
# Contrasts for LS-means estimates and hypothesis tests:
show_tests(lsm)
#> $recipe
#> (Intercept) recipeB recipeC temp recipeB:temp recipeC:temp
#> recipeA 1 0 0 200 0 0
#> recipeB 1 1 0 200 200 0
#> recipeC 1 0 1 200 0 200
#>