Sets parameters for logistf calls.

logistf.mod.control(tau = 0.5, terms.fit = NULL)

Arguments

tau

Penalization parameter (default = 0.5)

terms.fit

A numeric vector of terms to fit. Intercept has to be included if needed.

Value

tau

Penalization parameter (default = 0.5)

terms.fit

A numeric vector of terms to fit. Intercept has to be included if needed.

Examples

data(sexagg)
fit2<-logistf(case ~ age+oc+vic+vicl+vis+dia, data=sexagg, weights=COUNT, 
modcontrol=logistf.mod.control(terms.fit=c(1,2)))
summary(fit2)
#> logistf(formula = case ~ age + oc + vic + vicl + vis + dia, data = sexagg, 
#>     modcontrol = logistf.mod.control(terms.fit = c(1, 2)), weights = COUNT)
#> 
#> Model fitted by Penalized ML
#> Coefficients:
#>                   coef  se(coef) lower 0.95 upper 0.95    Chisq          p
#> (Intercept)  0.3030238 0.1408917  -3.308572   3.748575 4.678807 0.03053694
#> age         -0.8160945 0.3564077  -4.806455   1.635557 5.421096 0.01989486
#> oc           0.0000000 0.0000000   0.000000   0.000000 0.000000 0.00000000
#> vic          0.0000000 0.0000000   0.000000   0.000000 0.000000 0.00000000
#> vicl         0.0000000 0.0000000   0.000000   0.000000 0.000000 0.00000000
#> vis          0.0000000 0.0000000   0.000000   0.000000 0.000000 0.00000000
#> dia          0.0000000 0.0000000   0.000000   0.000000 0.000000 0.00000000
#>             method
#> (Intercept)      2
#> age              2
#> oc               3
#> vic              3
#> vicl             3
#> vis              3
#> dia              3
#> 
#> Method: 1-Wald, 2-Profile penalized log-likelihood, 3-None
#> 
#> Likelihood ratio test=5.421096 on 1 df, p=0.01989486, n=239
#> Wald test = 7.081914 on 1 df, p = 0.007786578