summary.maxLik.RdSummary the Maximum-Likelihood estimation including standard errors and t-values.
object of class 'maxLik', or 'summary.maxLik', usually a result from Maximum-Likelihood estimation.
The standard errors are only calculated if the ratio of the smallest and largest eigenvalue of the Hessian matrix is less than “eigentol”. Otherwise the Hessian is treated as singular.
currently not used.
An object of class 'summary.maxLik' with following components:
type of maximization.
number of iterations.
code of success.
a short message describing the code.
the loglik value in the maximum.
numeric matrix, the first column contains the parameter estimates, the second the standard errors, third t-values and fourth corresponding probabilities.
logical vector, which parameters are treated as constants.
number of free parameters.
information about the constrained optimization.
Passed directly further from maxim-object. NULL if
unconstrained maximization.
## ML estimation of exponential distribution:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
## Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, control=list(printLevel=2))
#> ----- Initial parameters: -----
#> fcn value: -52.62021
#> parameter initial gradient free
#> [1,] 1 47.37979 1
#> Condition number of the (active) hessian: 1
#> -----Iteration 1 -----
#> -----Iteration 2 -----
#> -----Iteration 3 -----
#> -----Iteration 4 -----
#> -----Iteration 5 -----
#> --------------
#> gradient close to zero (gradtol)
#> 5 iterations
#> estimate: 1.900411
#> Function value: -35.793
summary(a)
#> --------------------------------------------
#> Maximum Likelihood estimation
#> Newton-Raphson maximisation, 5 iterations
#> Return code 1: gradient close to zero (gradtol)
#> Log-Likelihood: -35.793
#> 1 free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> [1,] 1.9004 0.1901 9.999 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> --------------------------------------------
## Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1, control=list(printLevel=2))
#> ----- Initial parameters: -----
#> fcn value: -52.62021
#> parameter initial gradient free
#> [1,] 1 47.37979 1
#> Condition number of the (active) hessian: 1
#> -----Iteration 1 -----
#> -----Iteration 2 -----
#> -----Iteration 3 -----
#> -----Iteration 4 -----
#> -----Iteration 5 -----
#> --------------
#> gradient close to zero (gradtol)
#> 5 iterations
#> estimate: 1.900411
#> Function value: -35.793
summary(a)
#> --------------------------------------------
#> Maximum Likelihood estimation
#> Newton-Raphson maximisation, 5 iterations
#> Return code 1: gradient close to zero (gradtol)
#> Log-Likelihood: -35.793
#> 1 free parameters
#> Estimates:
#> Estimate Std. error t value Pr(> t)
#> [1,] 1.90 0.19 10 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> --------------------------------------------