summary.maxim.RdSummarizes the general maximization results in a way that does not assume the function is log-likelihood.
optimization result, object of class
maxim. See maxNR.
logical, whether to display Hessian matrix.
logical, whether to describe last unsuccesful step
if code == 3
object of class summary.maxim, summary of maximization
result.
maximum number of rows to be printed. This applies to the resulting coefficients (as those are printed as a matrix where the other column is the gradient), and to the Hessian if requested.
maximum number of columns to be printed. Only Hessian output, if requested, uses this argument.
currently not used.
Object of class summary.maxim, intended to be printed with
corresponding print method.
## minimize a 2D quadratic function:
f <- function(b) {
x <- b[1]; y <- b[2];
val <- -(x - 2)^2 - (y - 3)^2 # concave parabola
attr(val, "gradient") <- c(-2*x + 4, -2*y + 6)
attr(val, "hessian") <- matrix(c(-2, 0, 0, -2), 2, 2)
val
}
## Note that NR finds the minimum of a quadratic function with a single
## iteration. Use c(0,0) as initial value.
res <- maxNR( f, start = c(0,0) )
summary(res)
#> --------------------------------------------
#> Newton-Raphson maximisation
#> Number of iterations: 1
#> Return code: 1
#> gradient close to zero (gradtol)
#> Function value: 0
#> Estimates:
#> estimate gradient
#> [1,] 2 0
#> [2,] 3 0
#> --------------------------------------------
summary(res, hessian=TRUE)
#> --------------------------------------------
#> Newton-Raphson maximisation
#> Number of iterations: 1
#> Return code: 1
#> gradient close to zero (gradtol)
#> Function value: 0
#> Estimates:
#> estimate gradient
#> [1,] 2 0
#> [2,] 3 0
#> Hessian:
#> [,1] [,2]
#> [1,] -2 0
#> [2,] 0 -2
#> --------------------------------------------