vcov.maxLik.RdExtract variance-covariance matrices from maxLik objects.
# S3 method for class 'maxLik'
vcov( object, eigentol=1e-12, ... )the estimated variance covariance matrix of the coefficients. In
case of the estimated Hessian is singular, it's values are
Inf. The values corresponding to fixed parameters are zero.
The standard errors are only calculated if the ratio of the smallest and largest eigenvalue of the Hessian matrix is less than “eigentol”. Otherwise the Hessian is treated as singular.
## ML estimation of exponential random variables
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
## Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, control=list(printLevel=2))
#> ----- Initial parameters: -----
#> fcn value: -50.81886
#> parameter initial gradient free
#> [1,] 1 49.18114 1
#> Condition number of the (active) hessian: 1
#> -----Iteration 1 -----
#> -----Iteration 2 -----
#> -----Iteration 3 -----
#> -----Iteration 4 -----
#> -----Iteration 5 -----
#> --------------
#> gradient close to zero (gradtol)
#> 5 iterations
#> estimate: 1.967773
#> Function value: -32.30974
vcov(a)
#> [,1]
#> [1,] 0.03872798
## Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1)
vcov(a)
#> [,1]
#> [1,] 0.03872132