hohnloser.Rd
A data frame with the left ventricular ejection fraction of patients with malignant ventricular tachyarrhythmias including recurrence-free month and censoring.
data("hohnloser")
EF
left ventricular ejection in percent
month
recurrence-free month
cens
censoring: 0 cencored, 1 not censored
The data used here is published in Table 1 of Lausen and Schumacher (1992).
The data was first published by Hohnloser et al. (1987), the data used here is published in Table 1 of Lausen and Schumacher (1992).
Hohnloser, S.H., Raeder, E.A., Podrid, P.J., Graboys, T.B. and Lown, B. (1987), Predictors of antiarrhythmic drug efficacy in patients with malignant ventricular tachyarrhythmias. American Heart Journal 114, 1–7
Lausen, B. and Schumacher, M. (1992), Maximally Selected Rank Statistics. Biometrics 48, 73–85
set.seed(29)
library("survival")
# limiting distribution
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="Lau92")
#>
#> Maximally selected LogRank statistics using Lau92
#>
#> data: Surv(month, cens) by EF
#> M = 3.5691, p-value = 0.01065
#> sample estimates:
#> estimated cutpoint
#> 39
#>
# with integer valued scores for comparison
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="Lau92", iscores=TRUE)
#>
#> Maximally selected LogRank statistics using Lau92
#>
#> data: Surv(month, cens) by EF
#> M = 3.5639, p-value = 0.01083
#> sample estimates:
#> estimated cutpoint
#> 39
#>
# improved Bonferroni inequality
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="Lau94")
#>
#> Maximally selected LogRank statistics using Lau94
#>
#> data: Surv(month, cens) by EF
#> M = 3.5691, p-value = 0.005453
#> sample estimates:
#> estimated cutpoint
#> 39
#>
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="Lau94", iscores=TRUE)
#>
#> Maximally selected LogRank statistics using Lau94
#>
#> data: Surv(month, cens) by EF
#> M = 3.5639, p-value = 0.005556
#> sample estimates:
#> estimated cutpoint
#> 39
#>
# small sample solution by Hothorn & Lausen
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="HL")
#>
#> Maximally selected LogRank statistics using HL
#>
#> data: Surv(month, cens) by EF
#> M = 3.5639, p-value = 0.00667
#> sample estimates:
#> estimated cutpoint
#> 39
#>
# normal approximation
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="exactGauss")
#>
#> Maximally selected LogRank statistics using exactGauss
#>
#> data: Surv(month, cens) by EF
#> M = 3.5691, p-value = 0.004435
#> sample estimates:
#> estimated cutpoint
#> 39
#>
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="exactGauss", iscores=TRUE)
#>
#> Maximally selected LogRank statistics using exactGauss
#>
#> data: Surv(month, cens) by EF
#> M = 3.5639, p-value = 0.004338
#> sample estimates:
#> estimated cutpoint
#> 39
#>
# conditional Monte-Carlo
maxstat.test(Surv(month, cens) ~ EF, data=hohnloser,
smethod="LogRank", pmethod="condMC", B = 9999)
#>
#> Maximally selected LogRank statistics using condMC
#>
#> data: Surv(month, cens) by EF
#> M = 3.5691, p-value = 0.0045
#> sample estimates:
#> estimated cutpoint
#> 39
#>