All functions

betar()

GAM beta regression family

FFdes()

Level 5 fractional factorial designs

NCV

Neighbourhood Cross Validation

Predict.matrix() Predict.matrix2()

Prediction methods for smooth terms in a GAM

Predict.matrix(<cr.smooth>) Predict.matrix(<cs.smooth>) Predict.matrix(<cyclic.smooth>) Predict.matrix(<pspline.smooth>) Predict.matrix(<tensor.smooth>) Predict.matrix(<tprs.smooth>) Predict.matrix(<ts.smooth>) Predict.matrix(<t2.smooth>)

Predict matrix method functions

Predict.matrix(<soap.film>) Predict.matrix(<sf.wiggly>) Predict.matrix(<sf.film>)

Prediction matrix for soap film smooth

Rrank()

Find rank of upper triangular matrix

Sl.inirep() Sl.initial.repara()

Re-parametrizing model matrix X

Sl.repara()

Applying re-parameterization from log-determinant of penalty matrix to model matrix.

Sl.setup()

Setting up a list representing a block diagonal penalty matrix

Tweedie() tw()

GAM Tweedie families

XWXd() XWyd() Xbd() diagXVXd() ijXVXd()

Internal functions for discretized model matrix handling

anova(<gam>) print(<anova.gam>)

Approximate hypothesis tests related to GAM fits

bam()

Generalized additive models for very large datasets

bam.update()

Update a strictly additive bam model for new data.

bandchol()

Choleski decomposition of a band diagonal matrix

bcg()

Censored Box-Cox Gaussian family

blas.thread.test()

BLAS thread safety

bug.reports.mgcv

Reporting mgcv bugs.

cSplineDes()

Evaluate cyclic B spline basis

choldrop() cholup()

Deletion and rank one Cholesky factor update

choose.k

Basis dimension choice for smooths

clog()

GAM censored logistic distribution family for log-logistic AFT models

cnorm()

GAM censored normal family for log-normal AFT and Tobit models

columb columb.polys

Reduced version of Columbus OH crime data

concurvity()

GAM concurvity measures

cox.ph()

Additive Cox Proportional Hazard Model

cox.pht

Additive Cox proportional hazard models with time varying covariates

cpois()

GAM censored Poisson family

dDeta()

Obtaining derivative w.r.t. linear predictor

dpnorm()

Stable evaluation of difference between normal c.d.f.s

dppois()

Stable evaluation of difference between Poisson c.d.f.s

exclude.too.far()

Exclude prediction grid points too far from data

extract.lme.cov() extract.lme.cov2()

Extract the data covariance matrix from an lme object

factor.smooth.interaction factor.smooth

Factor smooth interactions in GAMs

family.mgcv

Distribution families in mgcv

fix.family.link() fix.family.var() fix.family.ls() fix.family.qf() fix.family.rd()

Modify families for use in GAM fitting and checking

fixDependence()

Detect linear dependencies of one matrix on another

formXtViX()

Form component of GAMM covariance matrix

formula(<gam>)

GAM formula

fs.test() fs.boundary()

FELSPLINE test function

gam()

Generalized additive models with integrated smoothness estimation

gam.check()

Some diagnostics for a fitted gam model

gam.control()

Setting GAM fitting defaults

gam.convergence gam.performance

GAM convergence and performance issues

gam.fit()

GAM P-IRLS estimation with GCV/UBRE smoothness estimation (deprecated)

gam.fit3()

P-IRLS GAM estimation with GCV, UBRE/AIC or RE/ML derivative calculation

gam.fit5.post.proc()

Post-processing output of gam.fit5

gam.mh()

Simple posterior simulation with gam fits

gam.models

Specifying generalized additive models

gam.outer()

Minimize GCV or UBRE score of a GAM using `outer' iteration

gam.reparam()

Finding stable orthogonal re-parameterization of the square root penalty.

gam.scale

Scale parameter estimation in GAMs

gam.selection

Generalized Additive Model Selection

gam.side()

Identifiability side conditions for a GAM

gam.vcomp() print(<gam.vcomp>)

Report gam smoothness estimates as variance components

gam2objective() gam2derivative()

Objective functions for GAM smoothing parameter estimation

gamObject

Fitted gam object

gamSim()

Simulate example data for GAMs

gamlss.etamu()

Transform derivatives wrt mu to derivatives wrt linear predictor

gamlss.gH()

Calculating derivatives of log-likelihood wrt regression coefficients

gamm()

Generalized Additive Mixed Models

gammals()

Gamma location-scale model family

gaulss()

Gaussian location-scale model family

get.var()

Get named variable or evaluate expression from list or data.frame

gevlss()

Generalized Extreme Value location-scale model family

gfam()

Grouped families

ginla()

GAM Integrated Nested Laplace Approximation Newton Enhanced

gumbls()

Gumbel location-scale model family

identifiability

Identifiability constraints

in.out()

Which of a set of points lie within a polygon defined region

inSide()

Are points inside boundary?

influence(<gam>)

Extract the diagonal of the influence/hat matrix for a GAM

initial.sp()

Starting values for multiple smoothing parameter estimation

interpret.gam()

Interpret a GAM formula

jagam() sim2jam()

Just Another Gibbs Additive Modeller: JAGS support for mgcv.

k.check()

Checking smooth basis dimension

ldTweedie()

Log Tweedie density evaluation

ldetS()

Getting log generalized determinant of penalty matrices

linear.functional.terms function.predictors signal.regression

Linear functionals of a smooth in GAMs

logLik(<gam>)

AIC and Log likelihood for a fitted GAM

lp() feasible()

Basic linear programming

ls.size()

Size of list elements

magic()

Stable Multiple Smoothing Parameter Estimation by GCV or UBRE

magic.post.proc()

Auxilliary information from magic fit

mchol()

Sparse chol function

mgcv.FAQ

Frequently Asked Questions for package mgcv

mgcv.package mgcv-package mgcv

Mixed GAM Computation Vehicle with GCV/AIC/REML/NCV smoothness estimation and GAMMs by REML/PQL

mgcv.parallel

Parallel computation in mgcv.

mini.roots()

Obtain square roots of penalty matrices

missing.data

Missing data in GAMs

model.matrix(<gam>)

Extract model matrix from GAM fit

mono.con()

Monotonicity constraints for a cubic regression spline

mroot()

Smallest square root of matrix

multinom()

GAM multinomial logistic regression

mvn()

Multivariate normal additive models

negbin() nb()

GAM negative binomial families

new.name()

Obtain a name for a new variable that is not already in use

notExp() notLog()

Functions for better-than-log positive parameterization

notExp2() notLog2()

Alternative to log parameterization for variance components

null.space.dimension()

The basis of the space of un-penalized functions for a TPRS

ocat()

GAM ordered categorical family

one.se.rule

The one standard error rule for smoother models

pcls()

Penalized Constrained Least Squares Fitting

pdIdnot()

Overflow proof pdMat class for multiples of the identity matrix

pdTens()

Functions implementing a pdMat class for tensor product smooths

pen.edf()

Extract the effective degrees of freedom associated with each penalty in a gam fit

place.knots()

Automatically place a set of knots evenly through covariate values

plot(<gam>)

Default GAM plotting

polys.plot()

Plot geographic regions defined as polygons

predict(<bam>)

Prediction from fitted Big Additive Model model

predict(<gam>)

Prediction from fitted GAM model

print(<gam>)

Print a Generalized Additive Model object.

psum.chisq()

Evaluate the c.d.f. of a weighted sum of chi-squared deviates

qq.gam()

QQ plots for gam model residuals

rTweedie()

Generate Tweedie random deviates

random.effects

Random effects in GAMs

residuals(<gam>)

Generalized Additive Model residuals

rig()

Generate inverse Gaussian random deviates

rmvn() r.mvt() dmvn() d.mvt()

Generate from or evaluate multivariate normal or t densities.

s()

Defining smooths in GAM formulae

scasm()

Shape constrained additive smooth models

scat()

GAM scaled t family for heavy tailed data

sdiag() `sdiag<-`()

Extract or modify diagonals of a matrix

shash()

Sinh-arcsinh location scale and shape model family

single.index

Single index models with mgcv

slanczos()

Compute truncated eigen decomposition of a symmetric matrix

smooth.construct() smooth.construct2()

Constructor functions for smooth terms in a GAM

smooth.construct(<ad.smooth.spec>) smooth.construct(<scad.smooth.spec>)

Adaptive smooths in GAMs

smooth.construct(<bs.smooth.spec>) smooth.construct(<sc.smooth.spec>) Predict.matrix(<Bspline.smooth>)

Penalized B-splines in GAMs

smooth.construct(<cr.smooth.spec>) smooth.construct(<cs.smooth.spec>) smooth.construct(<cc.smooth.spec>)

Penalized Cubic regression splines in GAMs

smooth.construct(<ds.smooth.spec>) Predict.matrix(<duchon.spline>)

Low rank Duchon 1977 splines

smooth.construct(<fs.smooth.spec>) Predict.matrix(<fs.interaction>)

Factor smooth interactions in GAMs

smooth.construct(<gp.smooth.spec>) Predict.matrix(<gp.smooth>)

Low rank Gaussian process smooths

smooth.construct(<mrf.smooth.spec>) Predict.matrix(<mrf.smooth>)

Markov Random Field Smooths

smooth.construct(<ps.smooth.spec>) smooth.construct(<cp.smooth.spec>)

P-splines in GAMs

smooth.construct(<re.smooth.spec>) Predict.matrix(<random.effect>)

Simple random effects in GAMs

smooth.construct(<so.smooth.spec>) smooth.construct(<sf.smooth.spec>) smooth.construct(<sw.smooth.spec>)

Soap film smoother constructer

smooth.construct(<sos.smooth.spec>) Predict.matrix(<sos.smooth>)

Splines on the sphere

smooth.construct(<sz.smooth.spec>) Predict.matrix(<sz.interaction>)

Constrained factor smooth interactions in GAMs

smooth.construct(<t2.smooth.spec>)

Tensor product smoothing constructor

smooth.construct(<tensor.smooth.spec>)

Tensor product smoothing constructor

smooth.construct(<tp.smooth.spec>) smooth.construct(<ts.smooth.spec>)

Penalized thin plate regression splines in GAMs

smooth.info()

Generic function to provide extra information about smooth specification

smooth.terms smooths

Smooth terms in GAM

smooth2random()

Convert a smooth to a form suitable for estimating as random effect

smoothCon() PredictMat()

Prediction/Construction wrapper functions for GAM smooth terms

sp.vcov()

Extract smoothing parameter estimator covariance matrix from (RE)ML GAM fit

spasm.construct() spasm.sp() spasm.smooth()

Experimental sparse smoothers

step.gam

Alternatives to step.gam

summary(<gam>) print(<summary.gam>)

Summary for a GAM fit

t2()

Define alternative tensor product smooths in GAM formulae

te() ti()

Define tensor product smooths or tensor product interactions in GAM formulae

tensor.prod.model.matrix() tensor.prod.penalties() `%.%`

Row Kronecker product/ tensor product smooth construction

totalPenaltySpace()

Obtaining (orthogonal) basis for null space and range of the penalty matrix

trichol()

Choleski decomposition of a tri-diagonal matrix

trind.generator()

Generates index arrays for upper triangular storage

twlss()

Tweedie location scale family

uniquecombs()

find the unique rows in a matrix

vcov(<gam>)

Extract parameter (estimator) covariance matrix from GAM fit

vis.gam()

Visualization of GAM objects

ziP()

GAM zero-inflated (hurdle) Poisson regression family

ziplss() zipll()

Zero inflated (hurdle) Poisson location-scale model family