smi.RdAn imputationList object containing five imputations of data
from the Victorian Adolescent Health Cohort Study.
data(smi)The underlying data are in a data frame with 1170 observations on the following 12 variables.
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a factor with levels Non drinker not in last wk <3 days last wk >=3 days last wk
a factor with levels Non drinker not in last wk av <5units/drink_day av =>5units/drink_day
a numeric vector
a factor with levels non/ex-smoker <6 days 6/7 days
a numeric vector
a numeric vector
a numeric vector
a logical vector
Carlin, JB, Li, N, Greenwood, P, Coffey, C. (2003) "Tools for analysing multiple imputed datasets" The Stata Journal 3; 3: 1-20.
data(smi)
with(smi, table(sex, drkfre))
#> [[1]]
#> drkfre
#> sex Non drinker not in last wk <3 days last wk >=3 days last wk
#> 0 282 201 105 12
#> 1 207 194 134 35
#>
#> [[2]]
#> drkfre
#> sex Non drinker not in last wk <3 days last wk >=3 days last wk
#> 0 282 195 109 14
#> 1 200 200 132 38
#>
#> [[3]]
#> drkfre
#> sex Non drinker not in last wk <3 days last wk >=3 days last wk
#> 0 278 202 109 11
#> 1 209 194 131 36
#>
#> [[4]]
#> drkfre
#> sex Non drinker not in last wk <3 days last wk >=3 days last wk
#> 0 284 188 114 14
#> 1 203 206 128 33
#>
#> [[5]]
#> drkfre
#> sex Non drinker not in last wk <3 days last wk >=3 days last wk
#> 0 288 191 109 12
#> 1 206 192 136 36
#>
#> attr(,"call")
#> with(smi, table(sex, drkfre))
model1<-with(smi, glm(drinkreg~wave*sex, family=binomial()))
MIcombine(model1)
#> Multiple imputation results:
#> with(smi, glm(drinkreg ~ wave * sex, family = binomial()))
#> MIcombine.default(model1)
#> results se
#> (Intercept) -2.25974358 0.26830731
#> wave 0.24055250 0.06587423
#> sex 0.64905222 0.34919264
#> wave:sex -0.03725422 0.08609199
summary(MIcombine(model1))
#> Multiple imputation results:
#> with(smi, glm(drinkreg ~ wave * sex, family = binomial()))
#> MIcombine.default(model1)
#> results se (lower upper) missInfo
#> (Intercept) -2.25974358 0.26830731 -2.78584855 -1.7336386 4 %
#> wave 0.24055250 0.06587423 0.11092461 0.3701804 12 %
#> sex 0.64905222 0.34919264 -0.03537187 1.3334763 1 %
#> wave:sex -0.03725422 0.08609199 -0.20623121 0.1317228 7 %