Model-based Estimations

describe_nonlinear() estimate_smooth()

Describe the smooth term (for GAMs) or non-linear predictors

estimate_contrasts()

Estimate Marginal Contrasts

estimate_expectation() estimate_link() estimate_prediction() estimate_relation()

Model-based predictions

estimate_grouplevel() reshape_grouplevel()

Group-specific parameters of mixed models random effects

estimate_means()

Estimate Marginal Means (Model-based average at each factor level)

estimate_slopes()

Estimate Marginal Effects

Data grids and Visualisation

plot(<estimate_predicted>) plot(<estimate_means>) tinyplot(<estimate_means>) visualisation_recipe(<estimate_predicted>) visualisation_recipe(<estimate_slopes>) visualisation_recipe(<estimate_grouplevel>)

Automated plotting for 'modelbased' objects

residualize_over_grid()

Compute partial residuals from a data grid

Missing Data

pool_contrasts()

Pool contrasts and comparisons from estimate_contrasts()

pool_predictions() pool_slopes()

Pool Predictions and Estimated Marginal Means

Miscellaenous

display(<estimate_contrasts>) print(<estimate_contrasts>)

Printing modelbased-objects

describe_nonlinear() estimate_smooth()

Describe the smooth term (for GAMs) or non-linear predictors

get_emcontrasts() get_emmeans() get_emtrends() get_marginalcontrasts() get_marginalmeans() get_marginaltrends()

Consistent API for 'emmeans' and 'marginaleffects'

zero_crossings() find_inversions()

Find zero-crossings and inversion points

smoothing()

Smoothing a vector or a time series

Global options

modelbased-options

Global options from the modelbased package

Sample datasets

coffee_data

Sample dataset from a course about analysis of factorial designs

puppy_love

More puppy therapy data

efc

Sample dataset from the EFC Survey

fish

Sample data set