Often you will resample a dataset hundreds or thousands of times. Storing
the complete resample each time would be very inefficient so this class
instead stores a "pointer" to the original dataset, and a vector of row
indexes. To turn this into a regular data frame, call as.data.frame
,
to extract the indices, use as.integer
.
resample(data, idx)
Other resampling techniques:
bootstrap()
,
resample_bootstrap()
,
resample_partition()
resample(mtcars, 1:10)
#> <resample [10 x 11]> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
b <- resample_bootstrap(mtcars)
b
#> <resample [32 x 11]> 20, 18, 17, 12, 25, 32, 20, 6, 25, 19, ...
as.integer(b)
#> [1] 20 18 17 12 25 32 20 6 25 19 4 30 29 12 28 7 22 2 31 9 20 9 29 29 32
#> [26] 12 27 19 25 25 16 25
as.data.frame(b)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Toyota Corolla.1 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Pontiac Firebird.1 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Merc 450SE.1 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Toyota Corolla.2 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Merc 230.1 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Ford Pantera L.1 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ford Pantera L.2 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Volvo 142E.1 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Merc 450SE.2 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Honda Civic.1 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Pontiac Firebird.2 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Pontiac Firebird.3 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Pontiac Firebird.4 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
# Many modelling functions will do the coercion for you, so you can
# use a resample object directly in the data argument
lm(mpg ~ wt, data = b)
#>
#> Call:
#> lm(formula = mpg ~ wt, data = b)
#>
#> Coefficients:
#> (Intercept) wt
#> 39.585 -5.777
#>