Industrial waste output in a manufactoring plant.

data("waste")

Format

This data frame contains the following variables

temp

temperature, a factor at three levels: low, medium, high.

envir

environment, a factor at five levels: env1 ... env5.

waste

response variable: waste output in a manufacturing plant.

Details

The data are from an experiment designed to study the effect of temperature (temp) and environment (envir) on waste output in a manufactoring plant. Two replicate measurements were taken at each temperature / environment combination.

Source

P. H. Westfall, R. D. Tobias, D. Rom, R. D. Wolfinger, Y. Hochberg (1999). Multiple Comparisons and Multiple Tests Using the SAS System. Cary, NC: SAS Institute Inc., page 177.

Examples


  ### set up two-way ANOVA with interactions
  amod <- aov(waste ~ temp * envir, data=waste)

  ### comparisons of main effects only
  K <- glht(amod, linfct = mcp(temp = "Tukey"))$linfct
#> Warning: covariate interactions found -- default contrast might be inappropriate
  K
#>               (Intercept) templow tempmedium envirenv2 envirenv3 envirenv4
#> low - high              0       1          0         0         0         0
#> medium - high           0       0          1         0         0         0
#> medium - low            0      -1          1         0         0         0
#>               envirenv5 templow:envirenv2 tempmedium:envirenv2
#> low - high            0                 0                    0
#> medium - high         0                 0                    0
#> medium - low          0                 0                    0
#>               templow:envirenv3 tempmedium:envirenv3 templow:envirenv4
#> low - high                    0                    0                 0
#> medium - high                 0                    0                 0
#> medium - low                  0                    0                 0
#>               tempmedium:envirenv4 templow:envirenv5 tempmedium:envirenv5
#> low - high                       0                 0                    0
#> medium - high                    0                 0                    0
#> medium - low                     0                 0                    0
#> attr(,"type")
#> [1] "Tukey"
  glht(amod, K)
#> 
#> 	 General Linear Hypotheses
#> 
#> Multiple Comparisons of Means: Tukey Contrasts
#> 
#> 
#> Linear Hypotheses:
#>                    Estimate
#> low - high == 0       -1.26
#> medium - high == 0    -1.34
#> medium - low == 0     -0.08
#> 

  ### comparisons of means (by averaging interaction effects)
  low <- grep("low:envi", colnames(K))
  med <- grep("medium:envi", colnames(K))
  K[1, low] <- 1 / (length(low) + 1)
  K[2, med] <- 1 / (length(low) + 1)
  K[3, med] <- 1 / (length(low) + 1)
  K[3, low] <- - 1 / (length(low) + 1)
  K
#>               (Intercept) templow tempmedium envirenv2 envirenv3 envirenv4
#> low - high              0       1          0         0         0         0
#> medium - high           0       0          1         0         0         0
#> medium - low            0      -1          1         0         0         0
#>               envirenv5 templow:envirenv2 tempmedium:envirenv2
#> low - high            0               0.2                  0.0
#> medium - high         0               0.0                  0.2
#> medium - low          0              -0.2                  0.2
#>               templow:envirenv3 tempmedium:envirenv3 templow:envirenv4
#> low - high                  0.2                  0.0               0.2
#> medium - high               0.0                  0.2               0.0
#> medium - low               -0.2                  0.2              -0.2
#>               tempmedium:envirenv4 templow:envirenv5 tempmedium:envirenv5
#> low - high                     0.0               0.2                  0.0
#> medium - high                  0.2               0.0                  0.2
#> medium - low                   0.2              -0.2                  0.2
#> attr(,"type")
#> [1] "Tukey"
  confint(glht(amod, K))
#> 
#> 	 Simultaneous Confidence Intervals
#> 
#> Multiple Comparisons of Means: Tukey Contrasts
#> 
#> 
#> Fit: aov(formula = waste ~ temp * envir, data = waste)
#> 
#> Quantile = 2.6
#> 95% family-wise confidence level
#>  
#> 
#> Linear Hypotheses:
#>                    Estimate lwr     upr    
#> low - high == 0    -2.0150  -3.2753 -0.7547
#> medium - high == 0 -2.2560  -3.5163 -0.9957
#> medium - low == 0  -0.2410  -1.5013  1.0193
#> 

  ### same as TukeyHSD
  TukeyHSD(amod, "temp")
#>   Tukey multiple comparisons of means
#>     95% family-wise confidence level
#> 
#> Fit: aov(formula = waste ~ temp * envir, data = waste)
#> 
#> $temp
#>               diff       lwr        upr     p adj
#> low-high    -2.015 -3.274054 -0.7559457 0.0022853
#> medium-high -2.256 -3.515054 -0.9969457 0.0008562
#> medium-low  -0.241 -1.500054  1.0180543 0.8737275
#> 

  ### set up linear hypotheses for all-pairs of both factors
  wht <- glht(amod, linfct = mcp(temp = "Tukey", envir = "Tukey"))
#> Warning: covariate interactions found -- default contrast might be inappropriate
#> Warning: covariate interactions found -- default contrast might be inappropriate

  ### cf. Westfall et al. (1999, page 181)
  summary(wht, test = adjusted("Shaffer"))
#> 
#> 	 Simultaneous Tests for General Linear Hypotheses
#> 
#> Multiple Comparisons of Means: Tukey Contrasts
#> 
#> 
#> Fit: aov(formula = waste ~ temp * envir, data = waste)
#> 
#> Linear Hypotheses:
#>                          Estimate Std. Error t value Pr(>|t|)  
#> temp: low - high == 0      -1.260      1.084  -1.162    1.000  
#> temp: medium - high == 0   -1.340      1.084  -1.236    1.000  
#> temp: medium - low == 0    -0.080      1.084  -0.074    1.000  
#> envir: env2 - env1 == 0     1.830      1.084   1.688    0.784  
#> envir: env3 - env1 == 0     1.330      1.084   1.227    1.000  
#> envir: env4 - env1 == 0     3.805      1.084   3.511    0.041 *
#> envir: env5 - env1 == 0     3.660      1.084   3.377    0.041 *
#> envir: env3 - env2 == 0    -0.500      1.084  -0.461    1.000  
#> envir: env4 - env2 == 0     1.975      1.084   1.822    0.619  
#> envir: env5 - env2 == 0     1.830      1.084   1.688    0.784  
#> envir: env4 - env3 == 0     2.475      1.084   2.283    0.337  
#> envir: env5 - env3 == 0     2.330      1.084   2.150    0.337  
#> envir: env5 - env4 == 0    -0.145      1.084  -0.134    1.000  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> (Adjusted p values reported -- Shaffer method)
#>