Predicted values are obtained at the specified values of primary. If object has a grouping structure (i.e. getGroups(object) is not NULL), predicted values are obtained for each group. If level has more than one element, predictions are obtained for each level of the max(level) grouping factor. If other covariates besides primary are used in the prediction model, their average (numeric covariates) or most frequent value (categorical covariates) are used to obtain the predicted values. The original observations are also included in the returned object.

augPred(object, primary, minimum, maximum, length.out, ...)
<!-- %% extra argument 'level': -->
# S3 method for class 'lme'
augPred(object, primary = NULL,
        minimum = min(primary), maximum = max(primary),
        length.out = 51, level = Q, ...)

Arguments

object

a fitted model object from which predictions can be extracted, using a predict method.

primary

an optional one-sided formula specifying the primary covariate to be used to generate the augmented predictions. By default, if a covariate can be extracted from the data used to generate object (using getCovariate), it will be used as primary.

minimum

an optional lower limit for the primary covariate. Defaults to min(primary).

maximum

an optional upper limit for the primary covariate. Defaults to max(primary).

length.out

an optional integer with the number of primary covariate values at which to evaluate the predictions. Defaults to 51.

level

an optional integer vector specifying the desired prediction levels. Levels increase from outermost to innermost grouping, with level 0 representing the population (fixed effects) predictions. Defaults to the innermost level.

...

some methods for the generic may require additional arguments.

Value

a data frame with four columns representing, respectively, the values of the primary covariate, the groups (if object does not have a grouping structure, all elements will be 1), the predicted or observed values, and the type of value in the third column: original for the observed values and predicted (single or no grouping factor) or predict.groupVar (multiple levels of grouping), with groupVar replaced by the actual grouping variable name (fixed is used for population predictions). The returned object inherits from class "augPred".

References

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New York.

Author

José Pinheiro and Douglas Bates bates@stat.wisc.edu

Note

This function is generic; method functions can be written to handle specific classes of objects. Classes which already have methods for this function include: gls, lme, and lmList.

Examples

fm1 <- lme(Orthodont, random = ~1)
augPred(fm1, length.out = 2, level = c(0,1))
#>                   age .groups distance           .type
#> 1                   8     M01 26.00000        original
#> 2                  10     M01 25.00000        original
#> 3                  12     M01 29.00000        original
#> 4                  14     M01 31.00000        original
#> 5                   8     M02 21.50000        original
#> 6                  10     M02 22.50000        original
#> 7                  12     M02 23.00000        original
#> 8                  14     M02 26.50000        original
#> 9                   8     M03 23.00000        original
#> 10                 10     M03 22.50000        original
#> 11                 12     M03 24.00000        original
#> 12                 14     M03 27.50000        original
#> 13                  8     M04 25.50000        original
#> 14                 10     M04 27.50000        original
#> 15                 12     M04 26.50000        original
#> 16                 14     M04 27.00000        original
#> 17                  8     M05 20.00000        original
#> 18                 10     M05 23.50000        original
#> 19                 12     M05 22.50000        original
#> 20                 14     M05 26.00000        original
#> 21                  8     M06 24.50000        original
#> 22                 10     M06 25.50000        original
#> 23                 12     M06 27.00000        original
#> 24                 14     M06 28.50000        original
#> 25                  8     M07 22.00000        original
#> 26                 10     M07 22.00000        original
#> 27                 12     M07 24.50000        original
#> 28                 14     M07 26.50000        original
#> 29                  8     M08 24.00000        original
#> 30                 10     M08 21.50000        original
#> 31                 12     M08 24.50000        original
#> 32                 14     M08 25.50000        original
#> 33                  8     M09 23.00000        original
#> 34                 10     M09 20.50000        original
#> 35                 12     M09 31.00000        original
#> 36                 14     M09 26.00000        original
#> 37                  8     M10 27.50000        original
#> 38                 10     M10 28.00000        original
#> 39                 12     M10 31.00000        original
#> 40                 14     M10 31.50000        original
#> 41                  8     M11 23.00000        original
#> 42                 10     M11 23.00000        original
#> 43                 12     M11 23.50000        original
#> 44                 14     M11 25.00000        original
#> 45                  8     M12 21.50000        original
#> 46                 10     M12 23.50000        original
#> 47                 12     M12 24.00000        original
#> 48                 14     M12 28.00000        original
#> 49                  8     M13 17.00000        original
#> 50                 10     M13 24.50000        original
#> 51                 12     M13 26.00000        original
#> 52                 14     M13 29.50000        original
#> 53                  8     M14 22.50000        original
#> 54                 10     M14 25.50000        original
#> 55                 12     M14 25.50000        original
#> 56                 14     M14 26.00000        original
#> 57                  8     M15 23.00000        original
#> 58                 10     M15 24.50000        original
#> 59                 12     M15 26.00000        original
#> 60                 14     M15 30.00000        original
#> 61                  8     M16 22.00000        original
#> 62                 10     M16 21.50000        original
#> 63                 12     M16 23.50000        original
#> 64                 14     M16 25.00000        original
#> 65                  8     F01 21.00000        original
#> 66                 10     F01 20.00000        original
#> 67                 12     F01 21.50000        original
#> 68                 14     F01 23.00000        original
#> 69                  8     F02 21.00000        original
#> 70                 10     F02 21.50000        original
#> 71                 12     F02 24.00000        original
#> 72                 14     F02 25.50000        original
#> 73                  8     F03 20.50000        original
#> 74                 10     F03 24.00000        original
#> 75                 12     F03 24.50000        original
#> 76                 14     F03 26.00000        original
#> 77                  8     F04 23.50000        original
#> 78                 10     F04 24.50000        original
#> 79                 12     F04 25.00000        original
#> 80                 14     F04 26.50000        original
#> 81                  8     F05 21.50000        original
#> 82                 10     F05 23.00000        original
#> 83                 12     F05 22.50000        original
#> 84                 14     F05 23.50000        original
#> 85                  8     F06 20.00000        original
#> 86                 10     F06 21.00000        original
#> 87                 12     F06 21.00000        original
#> 88                 14     F06 22.50000        original
#> 89                  8     F07 21.50000        original
#> 90                 10     F07 22.50000        original
#> 91                 12     F07 23.00000        original
#> 92                 14     F07 25.00000        original
#> 93                  8     F08 23.00000        original
#> 94                 10     F08 23.00000        original
#> 95                 12     F08 23.50000        original
#> 96                 14     F08 24.00000        original
#> 97                  8     F09 20.00000        original
#> 98                 10     F09 21.00000        original
#> 99                 12     F09 22.00000        original
#> 100                14     F09 21.50000        original
#> 101                 8     F10 16.50000        original
#> 102                10     F10 19.00000        original
#> 103                12     F10 19.00000        original
#> 104                14     F10 19.50000        original
#> 105                 8     F11 24.50000        original
#> 106                10     F11 25.00000        original
#> 107                12     F11 28.00000        original
#> 108                14     F11 28.00000        original
#> predict.fixed1      8     M01 22.04259   predict.fixed
#> predict.fixed2     14     M01 26.00370   predict.fixed
#> predict.fixed3      8     M02 22.04259   predict.fixed
#> predict.fixed4     14     M02 26.00370   predict.fixed
#> predict.fixed5      8     M03 22.04259   predict.fixed
#> predict.fixed6     14     M03 26.00370   predict.fixed
#> predict.fixed7      8     M04 22.04259   predict.fixed
#> predict.fixed8     14     M04 26.00370   predict.fixed
#> predict.fixed9      8     M05 22.04259   predict.fixed
#> predict.fixed10    14     M05 26.00370   predict.fixed
#> predict.fixed11     8     M06 22.04259   predict.fixed
#> predict.fixed12    14     M06 26.00370   predict.fixed
#> predict.fixed13     8     M07 22.04259   predict.fixed
#> predict.fixed14    14     M07 26.00370   predict.fixed
#> predict.fixed15     8     M08 22.04259   predict.fixed
#> predict.fixed16    14     M08 26.00370   predict.fixed
#> predict.fixed17     8     M09 22.04259   predict.fixed
#> predict.fixed18    14     M09 26.00370   predict.fixed
#> predict.fixed19     8     M10 22.04259   predict.fixed
#> predict.fixed20    14     M10 26.00370   predict.fixed
#> predict.fixed21     8     M11 22.04259   predict.fixed
#> predict.fixed22    14     M11 26.00370   predict.fixed
#> predict.fixed23     8     M12 22.04259   predict.fixed
#> predict.fixed24    14     M12 26.00370   predict.fixed
#> predict.fixed25     8     M13 22.04259   predict.fixed
#> predict.fixed26    14     M13 26.00370   predict.fixed
#> predict.fixed27     8     M14 22.04259   predict.fixed
#> predict.fixed28    14     M14 26.00370   predict.fixed
#> predict.fixed29     8     M15 22.04259   predict.fixed
#> predict.fixed30    14     M15 26.00370   predict.fixed
#> predict.fixed31     8     M16 22.04259   predict.fixed
#> predict.fixed32    14     M16 26.00370   predict.fixed
#> predict.fixed33     8     F01 22.04259   predict.fixed
#> predict.fixed34    14     F01 26.00370   predict.fixed
#> predict.fixed35     8     F02 22.04259   predict.fixed
#> predict.fixed36    14     F02 26.00370   predict.fixed
#> predict.fixed37     8     F03 22.04259   predict.fixed
#> predict.fixed38    14     F03 26.00370   predict.fixed
#> predict.fixed39     8     F04 22.04259   predict.fixed
#> predict.fixed40    14     F04 26.00370   predict.fixed
#> predict.fixed41     8     F05 22.04259   predict.fixed
#> predict.fixed42    14     F05 26.00370   predict.fixed
#> predict.fixed43     8     F06 22.04259   predict.fixed
#> predict.fixed44    14     F06 26.00370   predict.fixed
#> predict.fixed45     8     F07 22.04259   predict.fixed
#> predict.fixed46    14     F07 26.00370   predict.fixed
#> predict.fixed47     8     F08 22.04259   predict.fixed
#> predict.fixed48    14     F08 26.00370   predict.fixed
#> predict.fixed49     8     F09 22.04259   predict.fixed
#> predict.fixed50    14     F09 26.00370   predict.fixed
#> predict.fixed51     8     F10 22.04259   predict.fixed
#> predict.fixed52    14     F10 26.00370   predict.fixed
#> predict.fixed53     8     F11 22.04259   predict.fixed
#> predict.fixed54    14     F11 26.00370   predict.fixed
#> predict.Subject1    8     M01 25.38635 predict.Subject
#> predict.Subject2   14     M01 29.34746 predict.Subject
#> predict.Subject3    8     M02 21.46107 predict.Subject
#> predict.Subject4   14     M02 25.42218 predict.Subject
#> predict.Subject5    8     M03 22.24613 predict.Subject
#> predict.Subject6   14     M03 26.20724 predict.Subject
#> predict.Subject7    8     M04 24.37699 predict.Subject
#> predict.Subject8   14     M04 28.33810 predict.Subject
#> predict.Subject9    8     M05 21.12462 predict.Subject
#> predict.Subject10  14     M05 25.08573 predict.Subject
#> predict.Subject11   8     M06 24.15269 predict.Subject
#> predict.Subject12  14     M06 28.11380 predict.Subject
#> predict.Subject13   8     M07 21.79752 predict.Subject
#> predict.Subject14  14     M07 25.75863 predict.Subject
#> predict.Subject15   8     M08 21.90967 predict.Subject
#> predict.Subject16  14     M08 25.87078 predict.Subject
#> predict.Subject17   8     M09 23.03118 predict.Subject
#> predict.Subject18  14     M09 26.99229 predict.Subject
#> predict.Subject19   8     M10 26.95646 predict.Subject
#> predict.Subject20  14     M10 30.91757 predict.Subject
#> predict.Subject21   8     M11 21.68537 predict.Subject
#> predict.Subject22  14     M11 25.64648 predict.Subject
#> predict.Subject23   8     M12 22.24613 predict.Subject
#> predict.Subject24  14     M12 26.20724 predict.Subject
#> predict.Subject25   8     M13 22.24613 predict.Subject
#> predict.Subject26  14     M13 26.20724 predict.Subject
#> predict.Subject27   8     M14 22.80688 predict.Subject
#> predict.Subject28  14     M14 26.76799 predict.Subject
#> predict.Subject29   8     M15 23.70409 predict.Subject
#> predict.Subject30  14     M15 27.66520 predict.Subject
#> predict.Subject31   8     M16 21.12462 predict.Subject
#> predict.Subject32  14     M16 25.08573 predict.Subject
#> predict.Subject33   8     F01 19.66666 predict.Subject
#> predict.Subject34  14     F01 23.62777 predict.Subject
#> predict.Subject35   8     F02 21.12462 predict.Subject
#> predict.Subject36  14     F02 25.08573 predict.Subject
#> predict.Subject37   8     F03 21.79752 predict.Subject
#> predict.Subject38  14     F03 25.75863 predict.Subject
#> predict.Subject39   8     F04 22.80688 predict.Subject
#> predict.Subject40  14     F04 26.76799 predict.Subject
#> predict.Subject41   8     F05 20.78816 predict.Subject
#> predict.Subject42  14     F05 24.74928 predict.Subject
#> predict.Subject43   8     F06 19.44235 predict.Subject
#> predict.Subject44  14     F06 23.40347 predict.Subject
#> predict.Subject45   8     F07 21.12462 predict.Subject
#> predict.Subject46  14     F07 25.08573 predict.Subject
#> predict.Subject47   8     F08 21.46107 predict.Subject
#> predict.Subject48  14     F08 25.42218 predict.Subject
#> predict.Subject49   8     F09 19.44235 predict.Subject
#> predict.Subject50  14     F09 23.40347 predict.Subject
#> predict.Subject51   8     F10 17.08719 predict.Subject
#> predict.Subject52  14     F10 21.04830 predict.Subject
#> predict.Subject53   8     F11 24.15269 predict.Subject
#> predict.Subject54  14     F11 28.11380 predict.Subject