nlsList.selfStart.Rd
The response variable and primary covariate in formula(data)
are used together with model
to construct the nonlinear model
formula. This is used in the nls
calls and, because a
self-starting model function can calculate initial estimates for its
parameters from the data, no starting estimates need to be provided.
# S3 method for class 'selfStart'
nlsList(model, data, start, control, level, subset,
na.action = na.fail, pool = TRUE, warn.nls = NA)
a "selfStart"
model function, which calculates
initial estimates for the model parameters from data
.
a data frame in which to interpret the variables in
model
. Because no grouping factor can be specified in
model
, data
must inherit from class
"groupedData"
.
an optional named list with initial values for the
parameters to be estimated in model
. It is passed as the
start
argument to each nls
call and is required when
the nonlinear function in model
does not inherit from class
selfStart
.
a list of control values passed as the control
argument to nls
. Defaults to an empty list.
an optional integer specifying the level of grouping to be used when multiple nested levels of grouping are present.
an optional expression indicating the subset of the rows of
data
that should be used in the fit. This can be a logical
vector, or a numeric vector indicating which observation numbers are
to be included, or a character vector of the row names to be
included. All observations are included by default.
a function that indicates what should happen when the
data contain NA
s. The default action (na.fail
) causes
nlsList
to print an error message and terminate if there are any
incomplete observations.
a list of nls
objects with as many components as the number of
groups defined by the grouping factor. A NULL
value is assigned
to the components corresponding to clusters for which the nls
algorithm failed to converge. Generic functions such as coef
,
fixed.effects
, lme
, pairs
, plot
,
predict
, random.effects
, summary
, and
update
have methods that can be applied to an nlsList
object.
fm1 <- nlsList(SSasympOff, CO2)
summary(fm1)
#> Call:
#> Model: uptake ~ SSasympOff(conc, Asym, lrc, c0) | Plant
#> Data: CO2
#>
#> Coefficients:
#> Asym
#> Estimate Std. Error t value Pr(>|t|)
#> Qn1 38.13978 0.9911157 38.48167 1.991995e-06
#> Qn2 42.87169 1.0932085 39.21638 2.583951e-06
#> Qn3 44.22800 1.0241029 43.18706 1.809264e-07
#> Qc1 36.42873 1.1941583 30.50578 1.140081e-05
#> Qc3 40.68370 1.2480885 32.59681 1.424622e-04
#> Qc2 39.81950 1.0167249 39.16447 2.692304e-06
#> Mn3 28.48285 1.0624237 26.80932 1.066432e-06
#> Mn2 32.12827 1.0174819 31.57625 3.488780e-06
#> Mn1 34.08481 1.3400580 25.43532 4.199318e-06
#> Mc2 13.55520 1.0506456 12.90178 4.385958e-06
#> Mc3 18.53506 0.8363374 22.16218 1.461565e-06
#> Mc1 21.78723 1.4113332 15.43734 5.756890e-06
#> lrc
#> Estimate Std. Error t value Pr(>|t|)
#> Qn1 -4.380647 0.2208027 -19.839647 2.789814e-05
#> Qn2 -4.665728 0.1581312 -29.505427 8.036968e-06
#> Qn3 -4.486118 0.1698748 -26.408376 1.291542e-06
#> Qc1 -4.861741 0.2124535 -22.883785 3.574868e-05
#> Qc3 -4.945218 0.1794898 -27.551534 2.755569e-04
#> Qc2 -4.463838 0.1564976 -28.523374 9.531808e-06
#> Mn3 -4.591566 0.2690656 -17.064855 6.469578e-06
#> Mn2 -4.466157 0.2330265 -19.165873 2.548164e-05
#> Mn1 -5.064579 0.2069978 -24.466818 4.902553e-06
#> Mc2 -4.560851 0.8205907 -5.558010 1.242239e-04
#> Mc3 -3.465158 1.2239475 -2.831133 4.548516e-03
#> Mc1 -5.142256 0.4475243 -11.490450 1.865741e-05
#> c0
#> Estimate Std. Error t value Pr(>|t|)
#> Qn1 51.22324 12.621453 4.0584263 0.0117884093
#> Qn2 55.85816 9.998214 5.5868139 0.0051398604
#> Qn3 54.64958 9.814188 5.5684259 0.0006120970
#> Qc1 31.07538 18.988521 1.6365349 0.2228630364
#> Qc3 35.08889 15.994755 2.1937748 0.3930903207
#> Qc2 72.09422 6.924937 10.4108114 0.0005089519
#> Mn3 46.97188 18.133572 2.5903269 0.0092919672
#> Mn2 56.03863 13.055031 4.2924933 0.0079486676
#> Mn1 36.40805 19.079675 1.9082112 0.0606738847
#> Mc2 13.05675 78.006927 0.1673794 0.6806349052
#> Mc3 67.84877 33.737187 2.0110975 0.0150825747
#> Mc1 -20.39998 62.466523 -0.3265746 0.5367826137
#>
#> Residual standard error: 1.79822 on 48 degrees of freedom
#>