gls
Objectsummary.gls.Rd
Additional information about the linear model fit represented
by object
is extracted and included as components of
object
.
# S3 method for class 'gls'
summary(object, verbose, ...)
an object inheriting from class "gls"
, representing
a generalized least squares fitted linear model.
an optional logical value used to control the amount of
output when the object is printed. Defaults to FALSE
.
some methods for this generic require additional arguments. None are used in this method.
an object inheriting from class summary.gls
with all components
included in object
(see glsObject
for a full
description of the components) plus the following components:
approximate correlation matrix for the coefficients estimates
a matrix with columns Value
,
Std. Error
, t-value
, and p-value
representing
respectively the coefficients estimates, their approximate standard
errors, the ratios between the estimates and their standard errors,
and the associated p-value under a \(t\) approximation. Rows
correspond to the different coefficients.
if more than five observations are used in the
gls
fit, a vector with the minimum, first quartile, median, third
quartile, and maximum of the residuals distribution; else the
residuals.
the Akaike Information Criterion corresponding to
object
.
the Bayesian Information Criterion corresponding to
object
.
fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
correlation = corAR1(form = ~ 1 | Mare))
summary(fm1)
#> Generalized least squares fit by REML
#> Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
#> Data: Ovary
#> AIC BIC logLik
#> 1571.455 1590.056 -780.7273
#>
#> Correlation Structure: AR(1)
#> Formula: ~1 | Mare
#> Parameter estimate(s):
#> Phi
#> 0.7532079
#>
#> Coefficients:
#> Value Std.Error t-value p-value
#> (Intercept) 12.216398 0.6646437 18.380373 0.0000
#> sin(2 * pi * Time) -2.774712 0.6450478 -4.301561 0.0000
#> cos(2 * pi * Time) -0.899605 0.6975383 -1.289685 0.1981
#>
#> Correlation:
#> (Intr) s(*p*T
#> sin(2 * pi * Time) 0.000
#> cos(2 * pi * Time) -0.294 0.000
#>
#> Standardized residuals:
#> Min Q1 Med Q3 Max
#> -2.41180365 -0.75405234 -0.02923628 0.63156880 3.16247697
#>
#> Residual standard error: 4.616172
#> Degrees of freedom: 308 total; 305 residual
coef(summary(fm1)) # "the matrix"
#> Value Std.Error t-value p-value
#> (Intercept) 12.2163982 0.6646437 18.380373 2.618737e-51
#> sin(2 * pi * Time) -2.7747122 0.6450478 -4.301561 2.286284e-05
#> cos(2 * pi * Time) -0.8996047 0.6975383 -1.289685 1.981371e-01