R/nlmixrGrad.R
nlmixr2Gill83.Rd
Get the optimal forward difference interval by Gill83 method
nlmixr2Gill83(
what,
args,
envir = parent.frame(),
which,
gillRtol = sqrt(.Machine$double.eps),
gillK = 10L,
gillStep = 2,
gillFtol = 0
)
either a function or a non-empty character string naming the function to be called.
a list of arguments to the function call. The
names
attribute of args
gives the argument names.
an environment within which to evaluate the call. This
will be most useful if what
is a character string and
the arguments are symbols or quoted expressions.
Which parameters to calculate the forward difference and optimal forward difference interval
The relative tolerance used for Gill 1983 determination of optimal step size.
The total number of possible steps to determine the optimal forward/central difference step size per parameter (by the Gill 1983 method). If 0, no optimal step size is determined. Otherwise this is the optimal step size determined.
When looking for the optimal forward difference step size, this is This is the step size to increase the initial estimate by. So each iteration the new step size = (prior step size)*gillStep
The gillFtol is the gradient error tolerance that is acceptable before issuing a warning/error about the gradient estimates.
A data frame with the following columns:
- info Gradient evaluation/forward difference information
- hf Forward difference final estimate
- df Derivative estimate
- df2 2nd Derivative Estimate
- err Error of the final estimate derivative
- aEps Absolute difference for forward numerical differences
- rEps Relative Difference for backward numerical differences
- aEpsC Absolute difference for central numerical differences
- rEpsC Relative difference for central numerical differences
The info
returns one of the following:
- "Not Assessed" Gradient wasn't assessed
- "Good Success" in Estimating optimal forward difference interval
- "High Grad Error" Large error; Derivative estimate error fTol
or more of the derivative
- "Constant Grad" Function constant or nearly constant for this parameter
- "Odd/Linear Grad" Function odd or nearly linear, df = K, df2 ~ 0
- "Grad changes quickly" df2 increases rapidly as h decreases
## These are taken from the numDeriv::grad examples to show how
## simple gradients are assessed with nlmixr2Gill83
nlmixr2Gill83(sin, pi)
#> Gill83 Derivative/Forward Difference
#> (rtol=1.49011611938477e-08; K=10, step=2, ftol=0)
#>
#> info hf hphi df df2 err aEps
#> 1 Odd/Linear Grad 2.237911e-11 1.118956e-11 -1 0 1.630865e-13 5.403504e-12
#> rEps aEpsC rEpsC f
#> 1 5.403504e-12 5.403504e-12 5.403504e-12 1.224647e-16
nlmixr2Gill83(sin, (0:10)*2*pi/10)
#> Gill83 Derivative/Forward Difference
#> (rtol=1.49011611938477e-08; K=10, step=2, ftol=0)
#>
#> info hf hphi df df2
#> 1 Grad changes quickly 1.045337e-07 5.226686e-08 1.0000000 8.796093e+12
#> 2 Grad changes quickly 1.702142e-07 8.510710e-08 0.8090170 4.254583e+19
#> 3 Grad changes quickly 2.358947e-07 1.179473e-07 0.3090168 3.584264e+19
#> 4 Grad changes quickly 3.015752e-07 1.507876e-07 -0.3090171 2.193033e+19
#> 5 Grad changes quickly 3.672556e-07 1.836278e-07 -0.8090173 9.139274e+18
#> 6 Grad changes quickly 4.329361e-07 2.164681e-07 -1.0000004 7.692125e+11
#> 7 Grad changes quickly 4.986166e-07 2.493083e-07 -0.8090174 -4.958098e+18
#> 8 Grad changes quickly 5.642971e-07 2.821485e-07 -0.3090169 -6.263551e+18
#> 9 Grad changes quickly 6.299776e-07 3.149888e-07 0.3090172 -5.025578e+18
#> 10 Grad changes quickly 6.956580e-07 3.478290e-07 0.8090169 -2.547164e+18
#> 11 Good 2.441411e-04 7.796106e-04 1.0000000 4.583226e-08
#> err aEps rEps aEpsC rEpsC
#> 1 4.597442e+05 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 2 3.620952e+12 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 3 4.227544e+12 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 4 3.306821e+12 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 5 1.678225e+12 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 6 1.665099e+05 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 7 1.236095e+12 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 8 1.767252e+12 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 9 1.583001e+12 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 10 8.859777e+11 1.045337e-07 1.045337e-07 1.045337e-07 1.045337e-07
#> 11 1.118954e-11 3.352119e-05 3.352119e-05 3.352119e-05 3.352119e-05
#> f
#> 1 -4.583242e-08
#> 2 -4.583242e-08
#> 3 -4.583242e-08
#> 4 -4.583242e-08
#> 5 -4.583242e-08
#> 6 -4.583242e-08
#> 7 -4.583242e-08
#> 8 -4.583242e-08
#> 9 -4.583242e-08
#> 10 -4.583242e-08
#> 11 -4.583242e-08
func0 <- function(x){ sum(sin(x)) }
nlmixr2Gill83(func0 , (0:10)*2*pi/10)
#> Gill83 Derivative/Forward Difference
#> (rtol=1.49011611938477e-08; K=10, step=2, ftol=0)
#>
#> info hf hphi df df2
#> 1 Grad changes quickly 7.391651e-08 3.695825e-08 1.0000000 1.203250e+17
#> 2 Grad changes quickly 1.203596e-07 6.017981e-08 0.8090168 4.538135e+16
#> 3 Grad changes quickly 1.668027e-07 8.340136e-08 0.3090166 2.362831e+16
#> 4 Grad changes quickly 2.132458e-07 1.066229e-07 -0.3090170 1.445699e+16
#> 5 Grad changes quickly 2.596889e-07 1.298445e-07 -0.8090170 9.748364e+15
#> 6 Odd/Linear Grad 3.061321e-07 1.530660e-07 -1.0000000 0.000000e+00
#> 7 High Grad Error 4.821089e-08 3.525752e-07 -0.8090170 5.876689e-01
#> 8 High Grad Error 3.788199e-08 3.990183e-07 -0.3090170 9.518254e-01
#> 9 Good 3.789588e-08 4.454614e-07 0.3090170 9.511281e-01
#> 10 Good 4.818847e-08 4.919045e-07 0.8090170 5.882158e-01
#> 11 Good 1.726341e-04 5.512680e-04 1.0000000 4.583208e-08
#> err aEps rEps aEpsC rEpsC
#> 1 4.447003e+09 7.391651e-08 7.391651e-08 7.391651e-08 7.391651e-08
#> 2 2.731041e+09 7.391651e-08 7.391651e-08 7.391651e-08 7.391651e-08
#> 3 1.970634e+09 7.391651e-08 7.391651e-08 7.391651e-08 7.391651e-08
#> 4 1.541446e+09 7.391651e-08 7.391651e-08 7.391651e-08 7.391651e-08
#> 5 1.265771e+09 7.391651e-08 7.391651e-08 7.391651e-08 7.391651e-08
#> 6 2.230920e-09 7.392210e-08 7.392210e-08 7.392210e-08 7.392210e-08
#> 7 2.833204e-08 1.010729e-08 1.010729e-08 1.010729e-08 1.010729e-08
#> 8 3.605704e-08 7.017484e-09 7.017484e-09 7.017484e-09 7.017484e-09
#> 9 3.604383e-08 6.288156e-09 6.288156e-09 6.288156e-09 6.288156e-09
#> 10 2.834522e-08 7.241087e-09 7.241087e-09 7.241087e-09 7.241087e-09
#> 11 7.912182e-12 2.370311e-05 2.370311e-05 2.370311e-05 2.370311e-05
#> f
#> 1 -2.291621e-08
#> 2 -2.291621e-08
#> 3 -2.291621e-08
#> 4 -2.291621e-08
#> 5 -2.291621e-08
#> 6 -2.291621e-08
#> 7 -2.291621e-08
#> 8 -2.291621e-08
#> 9 -2.291621e-08
#> 10 -2.291621e-08
#> 11 -2.291621e-08
func1 <- function(x){ sin(10*x) - exp(-x) }
curve(func1,from=0,to=5)
x <- 2.04
numd1 <- nlmixr2Gill83(func1, x)
exact <- 10*cos(10*x) + exp(-x)
c(numd1$df, exact, (numd1$df - exact)/exact)
#> [1] 0.332398077 0.333537144 -0.003415112
x <- c(1:10)
numd1 <- nlmixr2Gill83(func1, x)
exact <- 10*cos(10*x) + exp(-x)
cbind(numd1=numd1$df, exact, err=(numd1$df - exact)/exact)
#> numd1 exact err
#> [1,] -8.022836 -8.022836 -1.369260e-11
#> [2,] 4.216156 4.216156 -2.839580e-11
#> [3,] 1.592302 1.592302 -1.150871e-11
#> [4,] -6.651065 -6.651065 -4.125002e-11
#> [5,] 9.656398 9.656398 -5.172856e-11
#> [6,] -9.521651 -9.521651 2.985064e-10
#> [7,] 6.334104 6.334104 -8.697948e-11
#> [8,] -1.103537 -1.103537 -9.731425e-11
#> [9,] -4.480613 -4.480613 -1.320695e-10
#> [10,] 8.623852 8.623234 7.167430e-05
sc2.f <- function(x){
n <- length(x)
sum((1:n) * (exp(x) - x)) / n
}
sc2.g <- function(x){
n <- length(x)
(1:n) * (exp(x) - 1) / n
}
x0 <- rnorm(100)
exact <- sc2.g(x0)
g <- nlmixr2Gill83(sc2.f, x0)
max(abs(exact - g$df)/(1 + abs(exact)))
#> [1] 0.001003462