Regular lasso model
regularmodel(
fit,
varsVec,
covarsVec,
catvarsVec,
constraint = 1e-08,
lassotype = c("regular", "adaptive", "adjusted"),
stratVar = NULL,
...
)
nlmixr2 fit.
character vector of variables that need to be added
character vector of covariates that need to be added
character vector of categorical covariates that need to be added
theta cutoff. below cutoff then the theta will be fixed to zero.
must be 'regular' , 'adaptive', 'adjusted'
A variable to stratify on for cross-validation.
Other parameters to be passed to optimalTvaluelasso
return fit of the selected lasso coefficients
if (FALSE) { # \dontrun{
one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
})
}
d <- nlmixr2data::theo_sd
d$SEX <-0
d$SEX[d$ID<=6] <-1
fit <- nlmixr2(one.cmt, d, est = "saem", control = list(print = 0))
varsVec <- c("ka","cl","v")
covarsVec <- c("WT")
catvarsVec <- c("SEX")
# Model fit with regular lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec)
# Model fit with adaptive lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec,lassotype='adaptive')
# Model fit with adaptive-adjusted lasso coefficients:
lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec, lassotype='adjusted')
} # }