VPC based on ui model
vpcPlot(
fit,
data = NULL,
n = 300,
bins = "jenks",
n_bins = "auto",
bin_mid = "mean",
show = NULL,
stratify = NULL,
pred_corr = FALSE,
pred_corr_lower_bnd = 0,
pi = c(0.05, 0.95),
ci = c(0.05, 0.95),
uloq = fit$dataUloq,
lloq = fit$dataLloq,
log_y = FALSE,
log_y_min = 0.001,
xlab = NULL,
ylab = NULL,
title = NULL,
smooth = TRUE,
vpc_theme = NULL,
facet = "wrap",
scales = "fixed",
labeller = NULL,
vpcdb = FALSE,
verbose = FALSE,
...,
seed = 1009,
idv = "time",
cens = FALSE
)
vpcPlotTad(..., idv = "tad")
vpcCensTad(..., cens = TRUE, idv = "tad")
vpcCens(..., cens = TRUE, idv = "time")
nlmixr2 fit object
this is the data to use to augment the VPC fit. By
default is the fitted data, (can be retrieved by
getData
), but it can be changed by specifying
this argument.
Number of VPC simulations
either "density", "time", or "data", "none", or one of the approaches available in classInterval() such as "jenks" (default) or "pretty", or a numeric vector specifying the bin separators.
when using the "auto" binning method, what number of bins to aim for
either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries.
what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci)
character vector of stratification variables. Only 1 or 2 stratification variables can be supplied.
perform prediction-correction?
lower bound for the prediction-correction
simulated prediction interval to plot. Default is c(0.05, 0.95),
confidence interval to plot. Default is (0.05, 0.95)
Number or NULL indicating upper limit of quantification. Default is NULL.
Number or NULL indicating lower limit of quantification. Default is NULL.
Boolean indicting whether y-axis should be shown as logarithmic. Default is FALSE.
minimal value when using log_y argument. Default is 1e-3.
label for x axis
label for y axis
title
"smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE.
theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme()
either "wrap", "columns", or "rows"
either "fixed" (default), "free_y", "free_x" or "free"
ggplot2 labeller function to be passed to underlying ggplot object
Boolean whether to return the underlying vpcdb rather than the plot
show debugging information (TRUE or FALSE)
Args sent to rxSolve
an object specifying if and how the random number generator should be initialized
Name of independent variable. For vpcPlot()
and
vpcCens()
the default is "time"
for vpcPlotTad()
and
vpcCensTad()
this is "tad"
is a boolean to show if this is a censoring plot or
not. When cens=TRUE
this is actually a censoring vpc plot
(with vpcCens()
and vpcCensTad()
). When cens=FALSE
this is
traditional VPC plot (vpcPlot()
and vpcPlotTad()
).
Simulated dataset (invisibly)
# \donttest{
one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7; label("Additive residual error")
})
model({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
})
}
fit <-
nlmixr2est::nlmixr(
one.cmt,
data = nlmixr2data::theo_sd,
est = "saem",
control = list(print = 0)
)
#>
#>
#>
#>
#> ℹ parameter labels from comments are typically ignored in non-interactive mode
#> ℹ Need to run with the source intact to parse comments
#>
#>
#> → loading into symengine environment...
#> → pruning branches (`if`/`else`) of saem model...
#> ✔ done
#> → finding duplicate expressions in saem model...
#> ✔ done
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
#> ℹ calculate uninformed etas
#> ℹ done
#> Calculating covariance matrix
#> → loading into symengine environment...
#> → pruning branches (`if`/`else`) of saem model...
#> ✔ done
#> → finding duplicate expressions in saem predOnly model 0...
#> → finding duplicate expressions in saem predOnly model 1...
#> → finding duplicate expressions in saem predOnly model 2...
#> ✔ done
#>
#>
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
#> → Calculating residuals/tables
#> ✔ done
#> → compress origData in nlmixr2 object, save 5952
#> → compress phiM in nlmixr2 object, save 63664
#> → compress parHistData in nlmixr2 object, save 13816
#> → compress saem0 in nlmixr2 object, save 28320
vpcPlot(fit)
#>
#>
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
# }