Comprehensive Model Parameters

compare_parameters() compare_models()

Compare model parameters of multiple models

dominance_analysis()

Dominance Analysis

model_parameters() parameters()

Model Parameters

pool_parameters()

Pool Model Parameters

random_parameters()

Summary information from random effects

format(<parameters_model>) print(<parameters_model>) summary(<parameters_model>) print_html(<parameters_model>) print_md(<parameters_model>)

Print model parameters

sort_parameters()

Sort parameters by coefficient values

standardize_parameters() standardize_posteriors()

Parameters standardization

standardize_info()

Get Standardization Information

Documentation of Specific Class Objects

model_parameters(<aov>)

Parameters from ANOVAs

model_parameters(<befa>)

Parameters from Bayesian Exploratory Factor Analysis

model_parameters(<default>)

Parameters from (General) Linear Models

model_parameters(<zcpglm>)

Parameters from Zero-Inflated Models

model_parameters(<cgam>)

Parameters from Generalized Additive (Mixed) Models

model_parameters(<mlm>)

Parameters from multinomial or cumulative link models

model_parameters(<glmmTMB>)

Parameters from Mixed Models

model_parameters(<hclust>)

Parameters from Cluster Models (k-means, ...)

model_parameters(<mira>)

Parameters from multiply imputed repeated analyses

model_parameters(<lavaan>) model_parameters(<principal>)

Parameters from PCA, FA, CFA, SEM

model_parameters(<data.frame>) model_parameters(<brmsfit>)

Parameters from Bayesian Models

model_parameters(<BFBayesFactor>)

Parameters from BayesFactor objects

model_parameters(<rma>)

Parameters from Meta-Analysis

model_parameters(<htest>) model_parameters(<coeftest>)

Parameters from hypothesis tests

model_parameters(<glht>)

Parameters from Hypothesis Testing

model_parameters(<glimML>)

Parameters from special models

model_parameters(<t1way>)

Parameters from robust statistical objects in WRS2

model_parameters(<compare.loo>)

Bayesian Model Comparison

Standard Errors, Confidence Intervals, Degrees of Freedom and p-values

standard_error()

Standard Errors

ci(<default>)

Confidence Intervals (CI)

p_value()

p-values

degrees_of_freedom() dof()

Degrees of Freedom (DoF)

Approximation Methods

ci_kenward() dof_kenward() p_value_kenward() se_kenward()

Kenward-Roger approximation for SEs, CIs and p-values

ci_satterthwaite() dof_satterthwaite() p_value_satterthwaite() se_satterthwaite()

Satterthwaite approximation for SEs, CIs and p-values

ci_betwithin() dof_betwithin() p_value_betwithin()

Between-within approximation for SEs, CIs and p-values

ci_ml1() dof_ml1() p_value_ml1()

"m-l-1" approximation for SEs, CIs and p-values

Effect Existence and Significance

equivalence_test(<lm>)

Equivalence test

p_calibrate()

Calculate calibrated p-values.

p_direction(<lm>)

Probability of Direction (pd)

p_function() consonance_function() confidence_curve() format(<parameters_p_function>) print(<parameters_p_function>) print_html(<parameters_p_function>)

p-value or consonance function

p_significance(<lm>)

Practical Significance (ps)

Parameter Sampling

bootstrap_model()

Model bootstrapping

bootstrap_parameters()

Parameters bootstrapping

simulate_model()

Simulated draws from model coefficients

simulate_parameters()

Simulate Model Parameters

Feature Reduction

reduce_parameters() reduce_data()

Dimensionality reduction (DR) / Features Reduction

select_parameters()

Automated selection of model parameters

Data Reduction

Cluster Analysis

cluster_analysis()

Cluster Analysis

cluster_centers()

Find the cluster centers in your data

cluster_discrimination()

Compute a linear discriminant analysis on classified cluster groups

cluster_meta()

Metaclustering

cluster_performance()

Performance of clustering models

n_clusters() n_clusters_elbow() n_clusters_gap() n_clusters_silhouette() n_clusters_dbscan() n_clusters_hclust()

Find number of clusters in your data

predict(<parameters_clusters>)

Predict method for parameters_clusters objects

Factors and Principal Components

convert_efa_to_cfa() efa_to_cfa()

Conversion between EFA results and CFA structure

factor_analysis() principal_components() rotated_data() print_html(<parameters_efa>) predict(<parameters_efa>) print(<parameters_efa>) sort(<parameters_efa>) closest_component()

Principal Component Analysis (PCA) and Factor Analysis (FA)

factor_scores()

Extract factor scores from Factor Analysis (EFA) or Omega

get_scores()

Get Scores from Principal Component or Factor Analysis (PCA/FA)

n_factors() n_components()

Number of components/factors to retain in PCA/FA

reduce_parameters() reduce_data()

Dimensionality reduction (DR) / Features Reduction

reshape_loadings()

Reshape loadings between wide/long formats

Table and Value Formatting

display(<parameters_model>)

Print tables in different output formats

format_order()

Order (first, second, ...) formatting

format_parameters()

Parameter names formatting

format_p_adjust()

Format the name of the p-value adjustment methods

format_df_adjust()

Format the name of the degrees-of-freedom adjustment methods

format(<compare_parameters>) print(<compare_parameters>) print_html(<compare_parameters>) print_md(<compare_parameters>)

Print comparisons of model parameters

parameters_type()

Type of model parameters

reexports equivalence_test ci n_parameters p_direction p_significance standardize_names supported_models print_html print_md display describe_distribution demean rescale_weights visualisation_recipe kurtosis skewness

Objects exported from other packages

Functions exported from other packages

reexports equivalence_test ci n_parameters p_direction p_significance standardize_names supported_models print_html print_md display describe_distribution demean rescale_weights visualisation_recipe kurtosis skewness

Objects exported from other packages

Global options

parameters-options

Global options from the parameters package

Example Data Sets

qol_cancer

Sample data set

fish

Sample data set