Compute hierarchical or kmeans cluster analysis and return the group assignment for each observation as vector.
cluster_analysis(
x,
n = NULL,
method = "kmeans",
include_factors = FALSE,
standardize = TRUE,
verbose = TRUE,
distance_method = "euclidean",
hclust_method = "complete",
kmeans_method = "Hartigan-Wong",
dbscan_eps = 15,
iterations = 100,
...
)A data frame (with at least two variables), or a matrix (with at least two columns).
Number of clusters used for supervised cluster methods. If NULL,
the number of clusters to extract is determined by calling n_clusters().
Note that this argument does not apply for unsupervised clustering methods
like dbscan, hdbscan, mixture, pvclust, or pamk.
Method for computing the cluster analysis. Can be "kmeans"
(default; k-means using kmeans()), "hkmeans" (hierarchical k-means
using factoextra::hkmeans()), pam (K-Medoids using cluster::pam()),
pamk (K-Medoids that finds out the number of clusters), "hclust"
(hierarchical clustering using hclust() or pvclust::pvclust()),
dbscan (DBSCAN using dbscan::dbscan()), hdbscan (Hierarchical DBSCAN
using dbscan::hdbscan()), or mixture (Mixture modeling using
mclust::Mclust(), which requires the user to run library(mclust)
before).
Logical, if TRUE, factors are converted to numerical
values in order to be included in the data for determining the number of
clusters. By default, factors are removed, because most methods that
determine the number of clusters need numeric input only.
Standardize the dataframe before clustering (default).
Toggle warnings and messages.
Distance measure to be used for methods based on
distances (e.g., when method = "hclust" for hierarchical clustering. For
other methods, such as "kmeans", this argument will be ignored). Must be
one of "euclidean", "maximum", "manhattan", "canberra", "binary"
or "minkowski". See dist() and pvclust::pvclust() for more
information.
Agglomeration method to be used when method = "hclust"
or method = "hkmeans" (for hierarchical clustering). This should be one
of "ward", "ward.D2", "single", "complete", "average",
"mcquitty", "median" or "centroid". Default is "complete" (see
hclust()).
Algorithm used for calculating kmeans cluster. Only applies,
if method = "kmeans". May be one of "Hartigan-Wong" (default),
"Lloyd" (used by SPSS), or "MacQueen". See kmeans() for details on
this argument.
The eps argument for DBSCAN method. See n_clusters_dbscan().
The number of replications.
Arguments passed to or from other methods.
The group classification for each observation as vector. The
returned vector includes missing values, so it has the same length
as nrow(x).
The print() and plot() methods show the (standardized) mean value for
each variable within each cluster. Thus, a higher absolute value indicates
that a certain variable characteristic is more pronounced within that
specific cluster (as compared to other cluster groups with lower absolute
mean values).
Clusters classification can be obtained via print(x, newdata = NULL, ...).
There is also a plot()-method
implemented in the see-package.
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014) cluster: Cluster Analysis Basics and Extensions. R package.
n_clusters() to determine the number of clusters to extract.
cluster_discrimination() to determine the accuracy of cluster group
classification via linear discriminant analysis (LDA).
performance::check_clusterstructure() to check suitability of data
for clustering.
https://www.datanovia.com/en/lessons/
set.seed(33)
# K-Means ====================================================
rez <- cluster_analysis(iris[1:4], n = 3, method = "kmeans")
rez # Show results
#> # Clustering Solution
#>
#> The 3 clusters accounted for 68.16% of the total variance of the original data.
#>
#> Cluster | n_Obs | Sum_Squares | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width
#> ---------------------------------------------------------------------------------------
#> 1 | 21 | 23.16 | -1.32 | -0.37 | -1.13 | -1.11
#> 2 | 33 | 17.33 | -0.81 | 1.31 | -1.28 | -1.22
#> 3 | 96 | 149.26 | 0.57 | -0.37 | 0.69 | 0.66
#>
#> Sum_Squares_Total Sum_Squares_Between Sum_Squares_Within R2
#> 1 596 406.2488 189.7512 0.6816254
#>
#> # You can access the predicted clusters via `predict()`.
predict(rez) # Get clusters
#> [1] 2 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2
#> [38] 2 1 2 2 1 1 2 2 1 2 1 2 2 3 3 3 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [75] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3
#> [112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [149] 3 3
summary(rez) # Extract the centers values (can use 'plot()' on that)
#> Cluster Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 1 -1.3232208 -0.3718921 -1.1334386 -1.1111395
#> 2 2 -0.8135055 1.3145538 -1.2825372 -1.2156393
#> 3 3 0.5690971 -0.3705265 0.6888118 0.6609378
if (requireNamespace("MASS", quietly = TRUE)) {
cluster_discrimination(rez) # Perform LDA
}
#> # Accuracy of Cluster Group Classification via Linear Discriminant Analysis (LDA)
#>
#> Group Accuracy
#> 1 100.00%
#> 2 71.43%
#> 3 100.00%
#>
#> Overall accuracy of classification: 96.00%
# Hierarchical k-means (more robust k-means)
if (require("factoextra", quietly = TRUE)) {
rez <- cluster_analysis(iris[1:4], n = 3, method = "hkmeans")
rez # Show results
predict(rez) # Get clusters
}
#> Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2
#> [75] 2 3 3 3 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3
#> [112] 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 2 2 3 3 3 2 3 3 3 2 3 3 3 2 3
#> [149] 3 2
# Hierarchical Clustering (hclust) ===========================
rez <- cluster_analysis(iris[1:4], n = 3, method = "hclust")
rez # Show results
#> # Clustering Solution
#>
#> The 3 clusters accounted for 74.35% of the total variance of the original data.
#>
#> Cluster | n_Obs | Sum_Squares | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width
#> ---------------------------------------------------------------------------------------
#> 1 | 49 | 40.12 | -1.00 | 0.90 | -1.30 | -1.25
#> 2 | 24 | 18.65 | -0.40 | -1.36 | 0.06 | -0.04
#> 3 | 77 | 94.08 | 0.76 | -0.15 | 0.81 | 0.81
#>
#> Sum_Squares_Total Sum_Squares_Between Sum_Squares_Within R2
#> 1 596 443.1431 152.8569 0.7435286
#>
#> # You can access the predicted clusters via `predict()`.
predict(rez) # Get clusters
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 2 1 1 1 1 1 1 1 1 3 3 3 2 3 2 3 2 3 2 2 3 2 3 3 3 3 2 2 2 3 3 3 3
#> [75] 3 3 3 3 3 2 2 2 2 3 3 3 3 2 3 2 2 3 2 2 2 3 3 3 2 2 3 3 3 3 3 3 2 3 3 3 3
#> [112] 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [149] 3 3
# K-Medoids (pam) ============================================
if (require("cluster", quietly = TRUE)) {
rez <- cluster_analysis(iris[1:4], n = 3, method = "pam")
rez # Show results
predict(rez) # Get clusters
}
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3
#> [75] 3 2 2 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 2 3 2 2 2 2
#> [112] 2 2 3 2 2 2 2 2 3 2 3 2 3 2 2 3 3 2 2 2 2 2 3 3 2 2 2 3 2 2 2 3 2 2 2 3 2
#> [149] 2 3
# PAM with automated number of clusters
if (require("fpc", quietly = TRUE)) {
rez <- cluster_analysis(iris[1:4], method = "pamk")
rez # Show results
predict(rez) # Get clusters
}
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [149] 2 2
# DBSCAN ====================================================
if (require("dbscan", quietly = TRUE)) {
# Note that you can assimilate more outliers (cluster 0) to neighbouring
# clusters by setting borderPoints = TRUE.
rez <- cluster_analysis(iris[1:4], method = "dbscan", dbscan_eps = 1.45)
rez # Show results
predict(rez) # Get clusters
}
#>
#> Attaching package: 'dbscan'
#> The following object is masked from 'package:fpc':
#>
#> dbscan
#> The following object is masked from 'package:stats':
#>
#> as.dendrogram
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [149] 2 2
# Mixture ====================================================
if (require("mclust", quietly = TRUE)) {
library(mclust) # Needs the package to be loaded
rez <- cluster_analysis(iris[1:4], method = "mixture")
rez # Show results
predict(rez) # Get clusters
}
#> Package 'mclust' version 6.1.1
#> Type 'citation("mclust")' for citing this R package in publications.
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [149] 2 2