Reshape loadings between wide/long formats.
reshape_loadings(x, ...)
# S3 method for class 'parameters_efa'
reshape_loadings(x, threshold = NULL, ...)
# S3 method for class 'data.frame'
reshape_loadings(x, threshold = NULL, loadings_columns = NULL, ...)A data frame or a statistical model. For closest_component(), the
output of the principal_components() function.
Arguments passed to or from other methods.
A value between 0 and 1 indicates which (absolute) values
from the loadings should be removed. An integer higher than 1 indicates the
n strongest loadings to retain. Can also be "max", in which case it will
only display the maximum loading per variable (the most simple structure).
Vector indicating the columns corresponding to loadings.
if (require("psych")) {
pca <- model_parameters(psych::fa(attitude, nfactors = 3))
loadings <- reshape_loadings(pca)
loadings
reshape_loadings(loadings)
}
#> Variable | MR1 | MR2 | MR3 | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating | 0.90 | -0.07 | -0.05 | 1.02 | 0.23
#> complaints | 0.97 | -0.06 | 0.04 | 1.01 | 0.10
#> privileges | 0.44 | 0.25 | -0.05 | 1.64 | 0.65
#> learning | 0.47 | 0.54 | -0.28 | 2.51 | 0.24
#> raises | 0.55 | 0.43 | 0.25 | 2.35 | 0.23
#> critical | 0.16 | 0.17 | 0.48 | 1.46 | 0.67
#> advance | -0.11 | 0.91 | 0.07 | 1.04 | 0.22