Compute performance indices for clustering solutions.
Usage
cluster_performance(model, ...)
# S3 method for class 'hclust'
cluster_performance(model, data, clusters, ...)Examples
# kmeans
model <- kmeans(iris[1:4], 3)
cluster_performance(model)
#> Sum_Squares_Total Sum_Squares_Between Sum_Squares_Within R2
#> 1 681.3706 602.5192 78.85144 0.8842753
# hclust
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)
cluster_performance(model, data, clusters)
#> Sum_Squares_Total Sum_Squares_Between Sum_Squares_Within R2
#> 1 681.3706 591.8456 89.52501 0.8686104
# Retrieve performance from parameters
params <- model_parameters(kmeans(iris[1:4], 3))
cluster_performance(params)
#> Sum_Squares_Total Sum_Squares_Between Sum_Squares_Within R2
#> 1 681.3706 538.6171 142.7535 0.7904906
