All functions

Cigar

Cigarette Consumption

Crime

Crime in North Carolina

EmplUK

Employment and Wages in the United Kingdom

Gasoline

Gasoline Consumption

Grunfeld

Grunfeld's Investment Data

Hedonic

Hedonic Prices of Census Tracts in the Boston Area

LaborSupply

Wages and Hours Worked

Males

Wages and Education of Young Males

Parity

Purchasing Power Parity and other parity relationships

Produc

US States Production

RiceFarms

Production of Rice in Indonesia

Snmesp

Employment and Wages in Spain

SumHes

The Penn World Table, v. 5

Wages

Panel Data of Individual Wages

aneweytest()

Angrist and Newey's version of Chamberlain test for fixed effects

cipstest()

Cross-sectionally Augmented IPS Test for Unit Roots in Panel Models

cortab()

Cross–sectional correlation matrix

detect.lindep() alias(<plm>) alias(<pdata.frame>)

Functions to detect linear dependence

ercomp() print(<ercomp>)

Estimation of the error components

fixef(<plm>) print(<fixef>) summary(<fixef>) print(<summary.fixef>) fixef(<pggls>)

Extract the Fixed Effects

has.intercept()

Check for the presence of an intercept in a formula or in a fitted model

index(<pindex>) index(<pdata.frame>) index(<pseries>) index(<panelmodel>)

Extract the indexes of panel data

is.pbalanced()

Check if data are balanced

is.pconsecutive()

Check if time periods are consecutive

is.pseries()

Check if an object is a pseries

lead() lag(<pseries>) diff(<pseries>)

lag, lead, and diff for panel data

make.dummies()

Create a Dummy Matrix

make.pbalanced()

Make data balanced

make.pconsecutive()

Make data consecutive (and, optionally, also balanced)

model.frame(<pdata.frame>) formula(<pdata.frame>) model.matrix(<plm>) model.matrix(<pdata.frame>)

model.frame and model.matrix for panel data

mtest()

Arellano–Bond Test of Serial Correlation

nobs(<panelmodel>) nobs(<pgmm>)

Extract Total Number of Observations Used in Estimated Panelmodel

pFtest()

F Test for Individual and/or Time Effects

pbgtest()

Breusch–Godfrey Test for Panel Models

pbltest()

Baltagi and Li Serial Dependence Test For Random Effects Models

pbnftest()

Modified BNF–Durbin–Watson Test and Baltagi–Wu's LBI Test for Panel Models

pbsytest()

Bera, Sosa-Escudero and Yoon Locally–Robust Lagrange Multiplier Tests for Panel Models and Joint Test by Baltagi and Li

pcce() summary(<pcce>) print(<summary.pcce>) residuals(<pcce>) model.matrix(<pcce>) pmodel.response(<pcce>)

Common Correlated Effects estimators

pcdtest()

Tests of cross-section dependence for panel models

pdata.frame() `$<-`(<pdata.frame>) `[`(<pdata.frame>) `[[`(<pdata.frame>) `$`(<pdata.frame>) print(<pdata.frame>) as.list(<pdata.frame>) as.data.frame(<pdata.frame>)

pdata.frame: a data.frame for panel data

pdim() print(<pdim>)

Check for the Dimensions of the Panel

pdwtest()

Durbin–Watson Test for Panel Models

pggls() summary(<pggls>) print(<summary.pggls>) residuals(<pggls>)

General FGLS Estimators

pgmm() coef(<pgmm>) summary(<pgmm>) print(<summary.pgmm>)

Generalized Method of Moments (GMM) Estimation for Panel Data

pgrangertest()

Panel Granger (Non-)Causality Test (Dumitrescu/Hurlin (2012))

phansitest() print(<phansitest>)

Simes Test for unit roots in panel data

pht() summary(<pht>) print(<summary.pht>)

Hausman–Taylor Estimator for Panel Data

phtest()

Hausman Test for Panel Models

piest() print(<piest>) summary(<piest>) print(<summary.piest>)

Chamberlain estimator and test for fixed effects

pldv()

Panel estimators for limited dependent variables

pvcovHC() plm.data() dynformula() formula(<dynformula>) print(<dynformula>)

Deprecated functions of plm

plm-package

plm package: linear models for panel data

plm() print(<plm.list>) terms(<panelmodel>) vcov(<panelmodel>) fitted(<panelmodel>) residuals(<panelmodel>) df.residual(<panelmodel>) coef(<panelmodel>) print(<panelmodel>) update(<panelmodel>) deviance(<panelmodel>) formula(<plm>) plot(<plm>) residuals(<plm>) fitted(<plm>)

Panel Data Estimators

plm.fast

Option to Switch On/Off Fast Data Transformations

plmtest()

Lagrange FF Multiplier Tests for Panel Models

pmg() summary(<pmg>) print(<summary.pmg>) residuals(<pmg>)

Mean Groups (MG), Demeaned MG and CCE MG estimators

pmodel.response()

A function to extract the model.response

pooltest()

Test of Poolability

predict(<plm>)

Model Prediction for plm Objects

print(<pseries>) as.matrix(<pseries>) plot(<pseries>) summary(<pseries>) plot(<summary.pseries>) print(<summary.pseries>) Sum() Between() between() Within()

panel series

pseriesfy()

Turn all columns of a pdata.frame into class pseries.

punbalancedness()

Measures for Unbalancedness of Panel Data

purtest() print(<purtest>) summary(<purtest>) print(<summary.purtest>)

Unit root tests for panel data

pvar() print(<pvar>)

Check for Cross-Sectional and Time Variation

pvcm() summary(<pvcm>) print(<summary.pvcm>)

Variable Coefficients Models for Panel Data

pwaldtest()

Wald-style Chi-square Test and F Test

pwartest()

Wooldridge Test for AR(1) Errors in FE Panel Models

pwfdtest()

Wooldridge first–difference–based test for AR(1) errors in levels or first–differenced panel models

pwtest()

Wooldridge's Test for Unobserved Effects in Panel Models

r.squared()

R squared and adjusted R squared for panel models

ranef(<plm>)

Extract the Random Effects

sargan()

Hansen–Sargan Test of Overidentifying Restrictions

summary(<plm.list>) coef(<summary.plm.list>) print(<summary.plm.list>) summary(<plm>) print(<summary.plm>)

Summary for plm objects

vcovBK()

Beck and Katz Robust Covariance Matrix Estimators

vcovDC()

Double-Clustering Robust Covariance Matrix Estimator

vcovG()

Generic Lego building block for Robust Covariance Matrix Estimators

vcovHC(<plm>) vcovHC(<pcce>) vcovHC(<pgmm>)

Robust Covariance Matrix Estimators

vcovNW()

Newey and West (1987) Robust Covariance Matrix Estimator

vcovSCC()

Driscoll and Kraay (1998) Robust Covariance Matrix Estimator

within_intercept()

Overall Intercept for Within Models Along its Standard Error