Baltagi and Li (1995) 's Lagrange multiplier test for AR(1) or MA(1) idiosyncratic errors in panel models with random effects.
a model formula or an estimated random–effects model of
class plm ,
further arguments.
for the formula interface only: a data.frame,
one of "twosided",
"onesided". Selects either \(H_A: \rho \neq 0\) or
\(H_A: \rho = 0\) (i.e., the Normal or the Chi-squared
version of the test),
the index of the data.frame,
An object of class "htest".
This is a Lagrange multiplier test for the null of no serial
correlation, against the alternative of either an AR(1) or a MA(1)
process, in the idiosyncratic component of the error term in a
random effects panel model (as the analytical expression of the
test turns out to be the same under both alternatives,
(see Baltagi and Li 1995 and Baltagi and Li 1997)
. The
alternative argument, defaulting to twosided, allows testing
for positive serial correlation only, if set to onesided.
Baltagi B, Li Q (1995). “Testing AR(1) Against MA(1) Disturbances in an Error Component Model.” Journal of Econometrics, 68, 133–151.
Baltagi B, Li Q (1997). “Monte Carlo Results on Pure and Pretest Estimators of an Error Components Model With Autocorrelated Disturbances.” Annales d'Economie et de Statistique, 48, 69–82.
pdwtest(), pbnftest(), pbgtest(),
pbsytest(), pwartest() and
pwfdtest() for other serial correlation tests for
panel models.
data("Grunfeld", package = "plm")
# formula interface
pbltest(inv ~ value + capital, data = Grunfeld)
#>
#> Baltagi and Li two-sided LM test
#>
#> data: inv ~ value + capital
#> chisq = 69.532, df = 1, p-value < 2.2e-16
#> alternative hypothesis: AR(1)/MA(1) errors in RE panel model
#>
# plm interface
re_mod <- plm(inv ~ value + capital, data = Grunfeld, model = "random")
pbltest(re_mod)
#>
#> Baltagi and Li two-sided LM test
#>
#> data: formula(x$formula)
#> chisq = 69.532, df = 1, p-value < 2.2e-16
#> alternative hypothesis: AR(1)/MA(1) errors in RE panel model
#>
pbltest(re_mod, alternative = "onesided")
#>
#> Baltagi and Li one-sided LM test
#>
#> data: formula(x$formula)
#> z = 8.3386, p-value < 2.2e-16
#> alternative hypothesis: AR(1)/MA(1) errors in RE panel model
#>