This function takes a pdata.frame and turns all of its columns into objects of class pseries.

pseriesfy(x, ...)

Arguments

x

an object of class "pdata.frame",

...

further arguments (currently not used).

Value

A pdata.frame like the input pdata.frame but with all columns turned into pseries.

Details

Background: Initially created pdata.frames have as columns the pure/basic class (e.g., numeric, factor, character). When extracting a column from such a pdata.frame, the extracted column is turned into a pseries.

At times, it can be convenient to apply data transformation operations on such a pseriesfy-ed pdata.frame, see Examples.

Examples

library("plm")
data("Grunfeld", package = "plm")
pGrun <- pdata.frame(Grunfeld[ , 1:4], drop.index = TRUE)
pGrun2 <- pseriesfy(pGrun) # pseriesfy-ed pdata.frame

# compare classes of columns
lapply(pGrun,  class)
#> $inv
#> [1] "numeric"
#> 
#> $value
#> [1] "numeric"
#> 
lapply(pGrun2, class)
#> $inv
#> [1] "pseries" "numeric"
#> 
#> $value
#> [1] "pseries" "numeric"
#> 

# When using with()
with(pGrun,  lag(value)) # dispatches to base R's lag() 
#>   [1] 3078.50 4661.70 5387.10 2792.20 4313.20 4643.90 4551.20 3244.10 4053.70
#>  [10] 4379.30 4840.90 4900.90 3526.50 3254.70 3700.20 3755.60 4833.00 4924.90
#>  [19] 6241.70 5593.60 1362.40 1807.10 2676.30 1801.90 1957.30 2202.90 2380.50
#>  [28] 2168.60 1985.10 1813.90 1850.20 2067.70 1796.70 1625.80 1667.00 1677.40
#>  [37] 2289.50 2159.40 2031.30 2115.50 1170.60 2015.80 2803.30 2039.70 2256.20
#>  [46] 2132.20 1834.10 1588.00 1749.40 1687.20 2007.70 2208.30 1656.70 1604.40
#>  [55] 1431.80 1610.50 1819.40 2079.70 2371.60 2759.90  417.50  837.80  883.90
#>  [64]  437.90  679.70  727.80  643.60  410.90  588.40  698.40  846.40  893.80
#>  [73]  579.00  694.60  590.30  693.50  809.00  727.00 1001.50  703.20  157.70
#>  [82]  167.90  192.90  156.70  191.40  185.50  199.60  189.50  151.20  187.70
#>  [91]  214.70  232.90  249.00  224.50  237.30  240.10  327.30  359.40  398.40
#> [100]  365.70  197.00  210.30  223.10  216.70  286.40  298.00  276.90  272.60
#> [109]  287.40  330.30  324.40  401.90  407.40  409.20  482.20  673.80  676.90
#> [118]  702.00  793.50  927.30  138.00  200.10  210.10  161.20  161.70  145.10
#> [127]  110.60   98.10  108.80  118.20  126.50  156.70  119.40  129.10  134.80
#> [136]  140.80  179.00  178.10  186.80  192.70  191.50  516.00  729.00  560.40
#> [145]  519.90  628.50  537.10  561.20  617.20  626.70  737.20  760.50  581.40
#> [154]  662.30  583.80  635.20  723.80  864.10 1193.50 1188.90  290.60  291.10
#> [163]  335.00  246.00  356.20  289.80  268.20  213.30  348.20  374.20  387.20
#> [172]  347.40  291.90  297.20  276.90  274.60  339.90  474.80  496.00  474.50
#> [181]   70.91   87.94   82.20   58.72   80.54   86.47   77.68   62.16   62.24
#> [190]   61.82   65.85   69.54   64.97   68.00   71.24   69.05   83.04   74.42
#> [199]   63.51   58.12
#> attr(,"tsp")
#> [1]   0 199   1
with(pGrun2, lag(value)) # dispatches to plm's lag() respect. panel structure
#>   [1]      NA 3078.50 4661.70 5387.10 2792.20 4313.20 4643.90 4551.20 3244.10
#>  [10] 4053.70 4379.30 4840.90 4900.90 3526.50 3254.70 3700.20 3755.60 4833.00
#>  [19] 4924.90 6241.70      NA 1362.40 1807.10 2676.30 1801.90 1957.30 2202.90
#>  [28] 2380.50 2168.60 1985.10 1813.90 1850.20 2067.70 1796.70 1625.80 1667.00
#>  [37] 1677.40 2289.50 2159.40 2031.30      NA 1170.60 2015.80 2803.30 2039.70
#>  [46] 2256.20 2132.20 1834.10 1588.00 1749.40 1687.20 2007.70 2208.30 1656.70
#>  [55] 1604.40 1431.80 1610.50 1819.40 2079.70 2371.60      NA  417.50  837.80
#>  [64]  883.90  437.90  679.70  727.80  643.60  410.90  588.40  698.40  846.40
#>  [73]  893.80  579.00  694.60  590.30  693.50  809.00  727.00 1001.50      NA
#>  [82]  157.70  167.90  192.90  156.70  191.40  185.50  199.60  189.50  151.20
#>  [91]  187.70  214.70  232.90  249.00  224.50  237.30  240.10  327.30  359.40
#> [100]  398.40      NA  197.00  210.30  223.10  216.70  286.40  298.00  276.90
#> [109]  272.60  287.40  330.30  324.40  401.90  407.40  409.20  482.20  673.80
#> [118]  676.90  702.00  793.50      NA  138.00  200.10  210.10  161.20  161.70
#> [127]  145.10  110.60   98.10  108.80  118.20  126.50  156.70  119.40  129.10
#> [136]  134.80  140.80  179.00  178.10  186.80      NA  191.50  516.00  729.00
#> [145]  560.40  519.90  628.50  537.10  561.20  617.20  626.70  737.20  760.50
#> [154]  581.40  662.30  583.80  635.20  723.80  864.10 1193.50      NA  290.60
#> [163]  291.10  335.00  246.00  356.20  289.80  268.20  213.30  348.20  374.20
#> [172]  387.20  347.40  291.90  297.20  276.90  274.60  339.90  474.80  496.00
#> [181]      NA   70.91   87.94   82.20   58.72   80.54   86.47   77.68   62.16
#> [190]   62.24   61.82   65.85   69.54   64.97   68.00   71.24   69.05   83.04
#> [199]   74.42   63.51

# When lapply()-ing 
lapply(pGrun,  lag) # dispatches to base R's lag() 
#> $inv
#>   [1]  317.60  391.80  410.60  257.70  330.80  461.20  512.00  448.00  499.60
#>  [10]  547.50  561.20  688.10  568.90  529.20  555.10  642.90  755.90  891.20
#>  [19] 1304.40 1486.70  209.90  355.30  469.90  262.30  230.40  361.60  472.80
#>  [28]  445.60  361.60  288.20  258.70  420.30  420.50  494.50  405.10  418.80
#>  [37]  588.20  645.50  641.00  459.30   33.10   45.00   77.20   44.60   48.10
#>  [46]   74.40  113.00   91.90   61.30   56.80   93.60  159.90  147.20  146.30
#>  [55]   98.30   93.50  135.20  157.30  179.50  189.60   40.29   72.76   66.26
#>  [64]   51.60   52.41   69.41   68.35   46.80   47.40   59.57   88.78   74.12
#>  [73]   62.68   89.36   78.98  100.66  160.62  145.00  174.93  172.49   39.68
#>  [82]   50.73   74.24   53.51   42.65   46.48   61.40   39.67   62.24   52.32
#>  [91]   63.21   59.37   58.02   70.34   67.42   55.74   80.30   85.40   91.90
#> [100]   81.43   20.36   25.98   25.94   27.53   24.60   28.54   43.41   42.81
#> [109]   27.84   32.60   39.03   50.17   51.85   64.03   68.16   77.34   95.30
#> [118]   99.49  127.52  135.72   24.43   23.21   32.78   32.54   26.65   33.71
#> [127]   43.50   34.46   44.28   70.80   44.12   48.98   48.51   50.00   50.59
#> [136]   42.53   64.77   72.68   73.86   89.51   12.93   25.90   35.05   22.89
#> [145]   18.84   28.57   48.51   43.34   37.02   37.81   39.27   53.46   55.56
#> [154]   49.56   32.04   32.24   54.38   71.78   90.08   68.60   26.63   23.39
#> [163]   30.65   20.89   28.78   26.93   32.08   32.21   35.69   62.47   52.32
#> [172]   56.95   54.32   40.53   32.54   43.48   56.49   65.98   66.11   49.34
#> [181]    2.54    2.00    2.19    1.99    2.03    1.81    2.14    1.86    0.93
#> [190]    1.18    1.36    2.24    3.81    5.66    4.21    3.42    4.67    6.00
#> [199]    6.53    5.12
#> attr(,"tsp")
#> [1]   0 199   1
#> 
#> $value
#>   [1] 3078.50 4661.70 5387.10 2792.20 4313.20 4643.90 4551.20 3244.10 4053.70
#>  [10] 4379.30 4840.90 4900.90 3526.50 3254.70 3700.20 3755.60 4833.00 4924.90
#>  [19] 6241.70 5593.60 1362.40 1807.10 2676.30 1801.90 1957.30 2202.90 2380.50
#>  [28] 2168.60 1985.10 1813.90 1850.20 2067.70 1796.70 1625.80 1667.00 1677.40
#>  [37] 2289.50 2159.40 2031.30 2115.50 1170.60 2015.80 2803.30 2039.70 2256.20
#>  [46] 2132.20 1834.10 1588.00 1749.40 1687.20 2007.70 2208.30 1656.70 1604.40
#>  [55] 1431.80 1610.50 1819.40 2079.70 2371.60 2759.90  417.50  837.80  883.90
#>  [64]  437.90  679.70  727.80  643.60  410.90  588.40  698.40  846.40  893.80
#>  [73]  579.00  694.60  590.30  693.50  809.00  727.00 1001.50  703.20  157.70
#>  [82]  167.90  192.90  156.70  191.40  185.50  199.60  189.50  151.20  187.70
#>  [91]  214.70  232.90  249.00  224.50  237.30  240.10  327.30  359.40  398.40
#> [100]  365.70  197.00  210.30  223.10  216.70  286.40  298.00  276.90  272.60
#> [109]  287.40  330.30  324.40  401.90  407.40  409.20  482.20  673.80  676.90
#> [118]  702.00  793.50  927.30  138.00  200.10  210.10  161.20  161.70  145.10
#> [127]  110.60   98.10  108.80  118.20  126.50  156.70  119.40  129.10  134.80
#> [136]  140.80  179.00  178.10  186.80  192.70  191.50  516.00  729.00  560.40
#> [145]  519.90  628.50  537.10  561.20  617.20  626.70  737.20  760.50  581.40
#> [154]  662.30  583.80  635.20  723.80  864.10 1193.50 1188.90  290.60  291.10
#> [163]  335.00  246.00  356.20  289.80  268.20  213.30  348.20  374.20  387.20
#> [172]  347.40  291.90  297.20  276.90  274.60  339.90  474.80  496.00  474.50
#> [181]   70.91   87.94   82.20   58.72   80.54   86.47   77.68   62.16   62.24
#> [190]   61.82   65.85   69.54   64.97   68.00   71.24   69.05   83.04   74.42
#> [199]   63.51   58.12
#> attr(,"tsp")
#> [1]   0 199   1
#> 
lapply(pGrun2, lag) # dispatches to plm's lag() respect. panel structure
#> $inv
#>   [1]      NA  317.60  391.80  410.60  257.70  330.80  461.20  512.00  448.00
#>  [10]  499.60  547.50  561.20  688.10  568.90  529.20  555.10  642.90  755.90
#>  [19]  891.20 1304.40      NA  209.90  355.30  469.90  262.30  230.40  361.60
#>  [28]  472.80  445.60  361.60  288.20  258.70  420.30  420.50  494.50  405.10
#>  [37]  418.80  588.20  645.50  641.00      NA   33.10   45.00   77.20   44.60
#>  [46]   48.10   74.40  113.00   91.90   61.30   56.80   93.60  159.90  147.20
#>  [55]  146.30   98.30   93.50  135.20  157.30  179.50      NA   40.29   72.76
#>  [64]   66.26   51.60   52.41   69.41   68.35   46.80   47.40   59.57   88.78
#>  [73]   74.12   62.68   89.36   78.98  100.66  160.62  145.00  174.93      NA
#>  [82]   39.68   50.73   74.24   53.51   42.65   46.48   61.40   39.67   62.24
#>  [91]   52.32   63.21   59.37   58.02   70.34   67.42   55.74   80.30   85.40
#> [100]   91.90      NA   20.36   25.98   25.94   27.53   24.60   28.54   43.41
#> [109]   42.81   27.84   32.60   39.03   50.17   51.85   64.03   68.16   77.34
#> [118]   95.30   99.49  127.52      NA   24.43   23.21   32.78   32.54   26.65
#> [127]   33.71   43.50   34.46   44.28   70.80   44.12   48.98   48.51   50.00
#> [136]   50.59   42.53   64.77   72.68   73.86      NA   12.93   25.90   35.05
#> [145]   22.89   18.84   28.57   48.51   43.34   37.02   37.81   39.27   53.46
#> [154]   55.56   49.56   32.04   32.24   54.38   71.78   90.08      NA   26.63
#> [163]   23.39   30.65   20.89   28.78   26.93   32.08   32.21   35.69   62.47
#> [172]   52.32   56.95   54.32   40.53   32.54   43.48   56.49   65.98   66.11
#> [181]      NA    2.54    2.00    2.19    1.99    2.03    1.81    2.14    1.86
#> [190]    0.93    1.18    1.36    2.24    3.81    5.66    4.21    3.42    4.67
#> [199]    6.00    6.53
#> 
#> $value
#>   [1]      NA 3078.50 4661.70 5387.10 2792.20 4313.20 4643.90 4551.20 3244.10
#>  [10] 4053.70 4379.30 4840.90 4900.90 3526.50 3254.70 3700.20 3755.60 4833.00
#>  [19] 4924.90 6241.70      NA 1362.40 1807.10 2676.30 1801.90 1957.30 2202.90
#>  [28] 2380.50 2168.60 1985.10 1813.90 1850.20 2067.70 1796.70 1625.80 1667.00
#>  [37] 1677.40 2289.50 2159.40 2031.30      NA 1170.60 2015.80 2803.30 2039.70
#>  [46] 2256.20 2132.20 1834.10 1588.00 1749.40 1687.20 2007.70 2208.30 1656.70
#>  [55] 1604.40 1431.80 1610.50 1819.40 2079.70 2371.60      NA  417.50  837.80
#>  [64]  883.90  437.90  679.70  727.80  643.60  410.90  588.40  698.40  846.40
#>  [73]  893.80  579.00  694.60  590.30  693.50  809.00  727.00 1001.50      NA
#>  [82]  157.70  167.90  192.90  156.70  191.40  185.50  199.60  189.50  151.20
#>  [91]  187.70  214.70  232.90  249.00  224.50  237.30  240.10  327.30  359.40
#> [100]  398.40      NA  197.00  210.30  223.10  216.70  286.40  298.00  276.90
#> [109]  272.60  287.40  330.30  324.40  401.90  407.40  409.20  482.20  673.80
#> [118]  676.90  702.00  793.50      NA  138.00  200.10  210.10  161.20  161.70
#> [127]  145.10  110.60   98.10  108.80  118.20  126.50  156.70  119.40  129.10
#> [136]  134.80  140.80  179.00  178.10  186.80      NA  191.50  516.00  729.00
#> [145]  560.40  519.90  628.50  537.10  561.20  617.20  626.70  737.20  760.50
#> [154]  581.40  662.30  583.80  635.20  723.80  864.10 1193.50      NA  290.60
#> [163]  291.10  335.00  246.00  356.20  289.80  268.20  213.30  348.20  374.20
#> [172]  387.20  347.40  291.90  297.20  276.90  274.60  339.90  474.80  496.00
#> [181]      NA   70.91   87.94   82.20   58.72   80.54   86.47   77.68   62.16
#> [190]   62.24   61.82   65.85   69.54   64.97   68.00   71.24   69.05   83.04
#> [199]   74.42   63.51
#> 

# as.list(., keep.attributes = TRUE) on a non-pseriesfy-ed
# pdata.frame is similar and dispatches to plm's lag
lapply(as.list(pGrun, keep.attributes = TRUE), lag) 
#> $inv
#>  1-1935  1-1936  1-1937  1-1938  1-1939  1-1940  1-1941  1-1942  1-1943  1-1944 
#>      NA  317.60  391.80  410.60  257.70  330.80  461.20  512.00  448.00  499.60 
#>  1-1945  1-1946  1-1947  1-1948  1-1949  1-1950  1-1951  1-1952  1-1953  1-1954 
#>  547.50  561.20  688.10  568.90  529.20  555.10  642.90  755.90  891.20 1304.40 
#>  2-1935  2-1936  2-1937  2-1938  2-1939  2-1940  2-1941  2-1942  2-1943  2-1944 
#>      NA  209.90  355.30  469.90  262.30  230.40  361.60  472.80  445.60  361.60 
#>  2-1945  2-1946  2-1947  2-1948  2-1949  2-1950  2-1951  2-1952  2-1953  2-1954 
#>  288.20  258.70  420.30  420.50  494.50  405.10  418.80  588.20  645.50  641.00 
#>  3-1935  3-1936  3-1937  3-1938  3-1939  3-1940  3-1941  3-1942  3-1943  3-1944 
#>      NA   33.10   45.00   77.20   44.60   48.10   74.40  113.00   91.90   61.30 
#>  3-1945  3-1946  3-1947  3-1948  3-1949  3-1950  3-1951  3-1952  3-1953  3-1954 
#>   56.80   93.60  159.90  147.20  146.30   98.30   93.50  135.20  157.30  179.50 
#>  4-1935  4-1936  4-1937  4-1938  4-1939  4-1940  4-1941  4-1942  4-1943  4-1944 
#>      NA   40.29   72.76   66.26   51.60   52.41   69.41   68.35   46.80   47.40 
#>  4-1945  4-1946  4-1947  4-1948  4-1949  4-1950  4-1951  4-1952  4-1953  4-1954 
#>   59.57   88.78   74.12   62.68   89.36   78.98  100.66  160.62  145.00  174.93 
#>  5-1935  5-1936  5-1937  5-1938  5-1939  5-1940  5-1941  5-1942  5-1943  5-1944 
#>      NA   39.68   50.73   74.24   53.51   42.65   46.48   61.40   39.67   62.24 
#>  5-1945  5-1946  5-1947  5-1948  5-1949  5-1950  5-1951  5-1952  5-1953  5-1954 
#>   52.32   63.21   59.37   58.02   70.34   67.42   55.74   80.30   85.40   91.90 
#>  6-1935  6-1936  6-1937  6-1938  6-1939  6-1940  6-1941  6-1942  6-1943  6-1944 
#>      NA   20.36   25.98   25.94   27.53   24.60   28.54   43.41   42.81   27.84 
#>  6-1945  6-1946  6-1947  6-1948  6-1949  6-1950  6-1951  6-1952  6-1953  6-1954 
#>   32.60   39.03   50.17   51.85   64.03   68.16   77.34   95.30   99.49  127.52 
#>  7-1935  7-1936  7-1937  7-1938  7-1939  7-1940  7-1941  7-1942  7-1943  7-1944 
#>      NA   24.43   23.21   32.78   32.54   26.65   33.71   43.50   34.46   44.28 
#>  7-1945  7-1946  7-1947  7-1948  7-1949  7-1950  7-1951  7-1952  7-1953  7-1954 
#>   70.80   44.12   48.98   48.51   50.00   50.59   42.53   64.77   72.68   73.86 
#>  8-1935  8-1936  8-1937  8-1938  8-1939  8-1940  8-1941  8-1942  8-1943  8-1944 
#>      NA   12.93   25.90   35.05   22.89   18.84   28.57   48.51   43.34   37.02 
#>  8-1945  8-1946  8-1947  8-1948  8-1949  8-1950  8-1951  8-1952  8-1953  8-1954 
#>   37.81   39.27   53.46   55.56   49.56   32.04   32.24   54.38   71.78   90.08 
#>  9-1935  9-1936  9-1937  9-1938  9-1939  9-1940  9-1941  9-1942  9-1943  9-1944 
#>      NA   26.63   23.39   30.65   20.89   28.78   26.93   32.08   32.21   35.69 
#>  9-1945  9-1946  9-1947  9-1948  9-1949  9-1950  9-1951  9-1952  9-1953  9-1954 
#>   62.47   52.32   56.95   54.32   40.53   32.54   43.48   56.49   65.98   66.11 
#> 10-1935 10-1936 10-1937 10-1938 10-1939 10-1940 10-1941 10-1942 10-1943 10-1944 
#>      NA    2.54    2.00    2.19    1.99    2.03    1.81    2.14    1.86    0.93 
#> 10-1945 10-1946 10-1947 10-1948 10-1949 10-1950 10-1951 10-1952 10-1953 10-1954 
#>    1.18    1.36    2.24    3.81    5.66    4.21    3.42    4.67    6.00    6.53 
#> 
#> $value
#>  1-1935  1-1936  1-1937  1-1938  1-1939  1-1940  1-1941  1-1942  1-1943  1-1944 
#>      NA 3078.50 4661.70 5387.10 2792.20 4313.20 4643.90 4551.20 3244.10 4053.70 
#>  1-1945  1-1946  1-1947  1-1948  1-1949  1-1950  1-1951  1-1952  1-1953  1-1954 
#> 4379.30 4840.90 4900.90 3526.50 3254.70 3700.20 3755.60 4833.00 4924.90 6241.70 
#>  2-1935  2-1936  2-1937  2-1938  2-1939  2-1940  2-1941  2-1942  2-1943  2-1944 
#>      NA 1362.40 1807.10 2676.30 1801.90 1957.30 2202.90 2380.50 2168.60 1985.10 
#>  2-1945  2-1946  2-1947  2-1948  2-1949  2-1950  2-1951  2-1952  2-1953  2-1954 
#> 1813.90 1850.20 2067.70 1796.70 1625.80 1667.00 1677.40 2289.50 2159.40 2031.30 
#>  3-1935  3-1936  3-1937  3-1938  3-1939  3-1940  3-1941  3-1942  3-1943  3-1944 
#>      NA 1170.60 2015.80 2803.30 2039.70 2256.20 2132.20 1834.10 1588.00 1749.40 
#>  3-1945  3-1946  3-1947  3-1948  3-1949  3-1950  3-1951  3-1952  3-1953  3-1954 
#> 1687.20 2007.70 2208.30 1656.70 1604.40 1431.80 1610.50 1819.40 2079.70 2371.60 
#>  4-1935  4-1936  4-1937  4-1938  4-1939  4-1940  4-1941  4-1942  4-1943  4-1944 
#>      NA  417.50  837.80  883.90  437.90  679.70  727.80  643.60  410.90  588.40 
#>  4-1945  4-1946  4-1947  4-1948  4-1949  4-1950  4-1951  4-1952  4-1953  4-1954 
#>  698.40  846.40  893.80  579.00  694.60  590.30  693.50  809.00  727.00 1001.50 
#>  5-1935  5-1936  5-1937  5-1938  5-1939  5-1940  5-1941  5-1942  5-1943  5-1944 
#>      NA  157.70  167.90  192.90  156.70  191.40  185.50  199.60  189.50  151.20 
#>  5-1945  5-1946  5-1947  5-1948  5-1949  5-1950  5-1951  5-1952  5-1953  5-1954 
#>  187.70  214.70  232.90  249.00  224.50  237.30  240.10  327.30  359.40  398.40 
#>  6-1935  6-1936  6-1937  6-1938  6-1939  6-1940  6-1941  6-1942  6-1943  6-1944 
#>      NA  197.00  210.30  223.10  216.70  286.40  298.00  276.90  272.60  287.40 
#>  6-1945  6-1946  6-1947  6-1948  6-1949  6-1950  6-1951  6-1952  6-1953  6-1954 
#>  330.30  324.40  401.90  407.40  409.20  482.20  673.80  676.90  702.00  793.50 
#>  7-1935  7-1936  7-1937  7-1938  7-1939  7-1940  7-1941  7-1942  7-1943  7-1944 
#>      NA  138.00  200.10  210.10  161.20  161.70  145.10  110.60   98.10  108.80 
#>  7-1945  7-1946  7-1947  7-1948  7-1949  7-1950  7-1951  7-1952  7-1953  7-1954 
#>  118.20  126.50  156.70  119.40  129.10  134.80  140.80  179.00  178.10  186.80 
#>  8-1935  8-1936  8-1937  8-1938  8-1939  8-1940  8-1941  8-1942  8-1943  8-1944 
#>      NA  191.50  516.00  729.00  560.40  519.90  628.50  537.10  561.20  617.20 
#>  8-1945  8-1946  8-1947  8-1948  8-1949  8-1950  8-1951  8-1952  8-1953  8-1954 
#>  626.70  737.20  760.50  581.40  662.30  583.80  635.20  723.80  864.10 1193.50 
#>  9-1935  9-1936  9-1937  9-1938  9-1939  9-1940  9-1941  9-1942  9-1943  9-1944 
#>      NA  290.60  291.10  335.00  246.00  356.20  289.80  268.20  213.30  348.20 
#>  9-1945  9-1946  9-1947  9-1948  9-1949  9-1950  9-1951  9-1952  9-1953  9-1954 
#>  374.20  387.20  347.40  291.90  297.20  276.90  274.60  339.90  474.80  496.00 
#> 10-1935 10-1936 10-1937 10-1938 10-1939 10-1940 10-1941 10-1942 10-1943 10-1944 
#>      NA   70.91   87.94   82.20   58.72   80.54   86.47   77.68   62.16   62.24 
#> 10-1945 10-1946 10-1947 10-1948 10-1949 10-1950 10-1951 10-1952 10-1953 10-1954 
#>   61.82   65.85   69.54   64.97   68.00   71.24   69.05   83.04   74.42   63.51 
#>