This function extracts the information about the structure of the individual and time dimensions of panel data. Grouping information can also be extracted if the panel data were created with a grouping variable.

# S3 method for class 'pindex'
index(x, which = NULL, ...)

# S3 method for class 'pdata.frame'
index(x, which = NULL, ...)

# S3 method for class 'pseries'
index(x, which = NULL, ...)

# S3 method for class 'panelmodel'
index(x, which = NULL, ...)

Arguments

x

an object of class "pindex", "pdata.frame", "pseries" or "panelmodel",

which

the index(es) to be extracted (see details),

...

further arguments.

Value

A vector or an object of class c("pindex","data.frame") containing either one index, individual and time index, or (any combination of) individual, time and group indexes.

Details

Panel data are stored in a "pdata.frame" which has an "index" attribute. Fitted models in "plm" have a "model" element which is also a "pdata.frame" and therefore also has an "index" attribute. Finally, each series, once extracted from a "pdata.frame", becomes of class "pseries", which also has this "index" attribute. "index" methods are available for all these objects. The argument "which" indicates which index should be extracted. If which = NULL, all indexes are extracted. "which" can also be a vector of length 1, 2, or 3 (3 only if the pdata frame was constructed with an additional group index) containing either characters (the names of the individual variable and/or of the time variable and/or the group variable or "id" and "time") and "group" or integers (1 for the individual index, 2 for the time index, and 3 for the group index (the latter only if the pdata frame was constructed with such).)

See also

Author

Yves Croissant

Examples


data("Grunfeld", package = "plm")
Gr <- pdata.frame(Grunfeld, index = c("firm", "year"))
m <- plm(inv ~ value + capital, data = Gr)
index(Gr, "firm")
#>   [1] 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2 
#>  [26] 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3  3  3 
#>  [51] 3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4 
#>  [76] 4  4  4  4  4  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5 
#> [101] 6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  7  7  7  7  7 
#> [126] 7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  8  8  8  8  8  8  8  8  8  8 
#> [151] 8  8  8  8  8  8  8  8  8  8  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9 
#> [176] 9  9  9  9  9  10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
#> Levels: 1 2 3 4 5 6 7 8 9 10
index(Gr, "time")
#>   [1] 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
#>  [16] 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
#>  [31] 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939
#>  [46] 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
#>  [61] 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
#>  [76] 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
#>  [91] 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939
#> [106] 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
#> [121] 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
#> [136] 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
#> [151] 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1935 1936 1937 1938 1939
#> [166] 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
#> [181] 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
#> [196] 1950 1951 1952 1953 1954
#> 20 Levels: 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 ... 1954
index(Gr$inv, c(2, 1))
#>     year firm
#> 1   1935    1
#> 2   1936    1
#> 3   1937    1
#> 4   1938    1
#> 5   1939    1
#> 6   1940    1
#> 7   1941    1
#> 8   1942    1
#> 9   1943    1
#> 10  1944    1
#> 11  1945    1
#> 12  1946    1
#> 13  1947    1
#> 14  1948    1
#> 15  1949    1
#> 16  1950    1
#> 17  1951    1
#> 18  1952    1
#> 19  1953    1
#> 20  1954    1
#> 21  1935    2
#> 22  1936    2
#> 23  1937    2
#> 24  1938    2
#> 25  1939    2
#> 26  1940    2
#> 27  1941    2
#> 28  1942    2
#> 29  1943    2
#> 30  1944    2
#> 31  1945    2
#> 32  1946    2
#> 33  1947    2
#> 34  1948    2
#> 35  1949    2
#> 36  1950    2
#> 37  1951    2
#> 38  1952    2
#> 39  1953    2
#> 40  1954    2
#> 41  1935    3
#> 42  1936    3
#> 43  1937    3
#> 44  1938    3
#> 45  1939    3
#> 46  1940    3
#> 47  1941    3
#> 48  1942    3
#> 49  1943    3
#> 50  1944    3
#> 51  1945    3
#> 52  1946    3
#> 53  1947    3
#> 54  1948    3
#> 55  1949    3
#> 56  1950    3
#> 57  1951    3
#> 58  1952    3
#> 59  1953    3
#> 60  1954    3
#> 61  1935    4
#> 62  1936    4
#> 63  1937    4
#> 64  1938    4
#> 65  1939    4
#> 66  1940    4
#> 67  1941    4
#> 68  1942    4
#> 69  1943    4
#> 70  1944    4
#> 71  1945    4
#> 72  1946    4
#> 73  1947    4
#> 74  1948    4
#> 75  1949    4
#> 76  1950    4
#> 77  1951    4
#> 78  1952    4
#> 79  1953    4
#> 80  1954    4
#> 81  1935    5
#> 82  1936    5
#> 83  1937    5
#> 84  1938    5
#> 85  1939    5
#> 86  1940    5
#> 87  1941    5
#> 88  1942    5
#> 89  1943    5
#> 90  1944    5
#> 91  1945    5
#> 92  1946    5
#> 93  1947    5
#> 94  1948    5
#> 95  1949    5
#> 96  1950    5
#> 97  1951    5
#> 98  1952    5
#> 99  1953    5
#> 100 1954    5
#> 101 1935    6
#> 102 1936    6
#> 103 1937    6
#> 104 1938    6
#> 105 1939    6
#> 106 1940    6
#> 107 1941    6
#> 108 1942    6
#> 109 1943    6
#> 110 1944    6
#> 111 1945    6
#> 112 1946    6
#> 113 1947    6
#> 114 1948    6
#> 115 1949    6
#> 116 1950    6
#> 117 1951    6
#> 118 1952    6
#> 119 1953    6
#> 120 1954    6
#> 121 1935    7
#> 122 1936    7
#> 123 1937    7
#> 124 1938    7
#> 125 1939    7
#> 126 1940    7
#> 127 1941    7
#> 128 1942    7
#> 129 1943    7
#> 130 1944    7
#> 131 1945    7
#> 132 1946    7
#> 133 1947    7
#> 134 1948    7
#> 135 1949    7
#> 136 1950    7
#> 137 1951    7
#> 138 1952    7
#> 139 1953    7
#> 140 1954    7
#> 141 1935    8
#> 142 1936    8
#> 143 1937    8
#> 144 1938    8
#> 145 1939    8
#> 146 1940    8
#> 147 1941    8
#> 148 1942    8
#> 149 1943    8
#> 150 1944    8
#> 151 1945    8
#> 152 1946    8
#> 153 1947    8
#> 154 1948    8
#> 155 1949    8
#> 156 1950    8
#> 157 1951    8
#> 158 1952    8
#> 159 1953    8
#> 160 1954    8
#> 161 1935    9
#> 162 1936    9
#> 163 1937    9
#> 164 1938    9
#> 165 1939    9
#> 166 1940    9
#> 167 1941    9
#> 168 1942    9
#> 169 1943    9
#> 170 1944    9
#> 171 1945    9
#> 172 1946    9
#> 173 1947    9
#> 174 1948    9
#> 175 1949    9
#> 176 1950    9
#> 177 1951    9
#> 178 1952    9
#> 179 1953    9
#> 180 1954    9
#> 181 1935   10
#> 182 1936   10
#> 183 1937   10
#> 184 1938   10
#> 185 1939   10
#> 186 1940   10
#> 187 1941   10
#> 188 1942   10
#> 189 1943   10
#> 190 1944   10
#> 191 1945   10
#> 192 1946   10
#> 193 1947   10
#> 194 1948   10
#> 195 1949   10
#> 196 1950   10
#> 197 1951   10
#> 198 1952   10
#> 199 1953   10
#> 200 1954   10
index(m, "id")
#>   [1] 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2 
#>  [26] 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3  3  3 
#>  [51] 3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4 
#>  [76] 4  4  4  4  4  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5 
#> [101] 6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  7  7  7  7  7 
#> [126] 7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  8  8  8  8  8  8  8  8  8  8 
#> [151] 8  8  8  8  8  8  8  8  8  8  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9 
#> [176] 9  9  9  9  9  10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
#> Levels: 1 2 3 4 5 6 7 8 9 10

# with additional group index
data("Produc", package = "plm")
pProduc <- pdata.frame(Produc, index = c("state", "year", "region"))
index(pProduc, 3)
#>   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [149] 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [186] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [223] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [260] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [297] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [334] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [371] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [408] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [445] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [482] 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
#> [519] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
#> [556] 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
#> [593] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
#> [630] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [667] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [704] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [741] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9
#> [778] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
#> [815] 9 9
#> Levels: 1 2 3 4 5 6 7 8 9
index(pProduc, "region")
#>   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [149] 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [186] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [223] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [260] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [297] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [334] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [371] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [408] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [445] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [482] 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
#> [519] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
#> [556] 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
#> [593] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
#> [630] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [667] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [704] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [741] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9
#> [778] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
#> [815] 9 9
#> Levels: 1 2 3 4 5 6 7 8 9
index(pProduc, "group")
#>   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [149] 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [186] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [223] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [260] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [297] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [334] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [371] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [408] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [445] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [482] 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
#> [519] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
#> [556] 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
#> [593] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
#> [630] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [667] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [704] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
#> [741] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9
#> [778] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
#> [815] 9 9
#> Levels: 1 2 3 4 5 6 7 8 9