Compute and tabulate estimates for log-log regression
df_doseprop(
data,
metrics,
metric_var = "PPTESTCD",
exp_var = "PPORRES",
dose_var = "DOSE",
method = "normal",
ci = 0.95,
sigdigits = 3
)
Input dataset for log-log regression.
Default expected format is output from PKNCA::pk.nca()
(i.e., SDTM PP formatting)
character vector of exposure metrics in data
to plot
character string of variable in data
containing the values provided in metrics
.
Default is "PPTESTCD".
Character string specifying the variable in data
containing the exposure metric (dependent variable)
Default is "PPORRES".
Character string specifying the variable in data
containing the dose (independent variable)
Default is "DOSE".
character string specifying the distribution to be used to derived the confidence interval. Options are "normal" (default) and "tdist"
confidence interval to be calculated. Options are 0.95 (default) and 0.90
number of significant digits for rounding
data.frame
df_doseprop(data_sad_nca, metrics = c("aucinf.obs", "cmax"))
#> Intercept StandardError CI Power LCL UCL Proportional
#> 1 4.04 0.0663 95% 0.997 0.867 1.13 TRUE
#> 2 1.09 0.0616 95% 1.070 0.947 1.19 TRUE
#> PowerCI Interpretation PPTESTCD
#> 1 Power: 0.997 (95% CI 0.867-1.13) Dose-proportional aucinf.obs
#> 2 Power: 1.07 (95% CI 0.947-1.19) Dose-proportional cmax