Compute estimate table for log-log regression
df_loglog(fit, method = "normal", ci = 0.95, sigdigits = 3)
lm
model object for the log-log regression
character string specifying the distribution to be used to derived the confidence interval. Options are "normal" (default) and "tdist"
confidence interval to be calculated. Options are 0.95 (default) and 0.90
number of significant digits for rounding
data.frame
mod_auc <- mod_loglog(dplyr::filter(data_sad_nca, PPTESTCD == "aucinf.obs"))
df_loglog(mod_auc)
#> Intercept StandardError CI Power LCL UCL Proportional
#> 1 4.04 0.0663 95% 0.997 0.867 1.13 TRUE
#> PowerCI Interpretation
#> 1 Power: 0.997 (95% CI 0.867-1.13) Dose-proportional
mod_cmax <- mod_loglog(dplyr::filter(data_sad_nca, PPTESTCD == "cmax"))
df_loglog(mod_cmax)
#> Intercept StandardError CI Power LCL UCL Proportional
#> 1 1.09 0.0616 95% 1.07 0.947 1.19 TRUE
#> PowerCI Interpretation
#> 1 Power: 1.07 (95% CI 0.947-1.19) Dose-proportional