bernoulli.RdThe Bernoulli numbers are a sequence of rational numbers that play an important role for the series expansion of hyperbolic functions, in the Euler-MacLaurin formula, or for certain values of Riemann's function at negative integers.
bernoulli(n, x)The calculation of the Bernoulli numbers uses the values of the zeta function
at negative integers, i.e. \(B_n = -n \, zeta(1-n)\). Bernoulli numbers
\(B_n\) for odd n are 0 except \(B_1\) which is set to -0.5 on
purpose.
The Bernoulli polynomials can be directly defined as $$ B_n(x) = \sum_{k=0}^n {n \choose k} b_{n-k}\, x^k $$ and it is immediately clear that the Bernoulli numbers are then given as \(B_n = B_n(0)\).
Returns the first n+1 Bernoulli numbers, if x is missing, or
the value of the Bernoulli polynomial at point(s) x.
See the entry on Bernoulli numbers in the Wikipedia.
The definition uses B_1 = -1/2 in accordance with the definition of
the Bernoulli polynomials.
bernoulli(10)
#> [1] 1.00000000 -0.50000000 0.16666667 0.00000000 -0.03333333 0.00000000
#> [7] 0.02380952 0.00000000 -0.03333333 0.00000000 0.07575758
# 1.00000000 -0.50000000 0.16666667 0.00000000 -0.03333333
# 0.00000000 0.02380952 0.00000000 -0.03333333 0.00000000 0.07575758
#
if (FALSE) { # \dontrun{
x1 <- linspace(0.3, 0.7, 2)
y1 <- bernoulli(1, x1)
plot(x1, y1, type='l', col='red', lwd=2,
xlim=c(0.0, 1.0), ylim=c(-0.2, 0.2),
xlab="", ylab="", main="Bernoulli Polynomials")
grid()
xs <- linspace(0, 1, 51)
lines(xs, bernoulli(2, xs), col="green", lwd=2)
lines(xs, bernoulli(3, xs), col="blue", lwd=2)
lines(xs, bernoulli(4, xs), col="cyan", lwd=2)
lines(xs, bernoulli(5, xs), col="brown", lwd=2)
lines(xs, bernoulli(6, xs), col="magenta", lwd=2)
legend(0.75, 0.2, c("B_1", "B_2", "B_3", "B_4", "B_5", "B_6"),
col=c("red", "green", "blue", "cyan", "brown", "magenta"),
lty=1, lwd=2)
} # }