Clenshaw-Curtis Quadrature Formula
clenshaw_curtis(f, a = -1, b = 1, n = 1024, ...)
Arguments
- f
function, the integrand, without singularities.
- a, b
lower and upper limit of the integral; must be finite.
- n
Number of Chebyshev nodes to account for.
- ...
Additional parameters to be passed to the function
Details
Clenshaw-Curtis quadrature is based on sampling the integrand on
Chebyshev points, an operation that can be implemented using the
Fast Fourier Transform.
Value
Numerical scalar, the value of the integral.
References
Trefethen, L. N. (2008). Is Gauss Quadrature Better Than Clenshaw-Curtis?
SIAM Review, Vol. 50, No. 1, pp 67–87.
Examples
## Quadrature with Chebyshev nodes and weights
f <- function(x) sin(x+cos(10*exp(x))/3)
if (FALSE) ezplot(f, -1, 1, fill = TRUE) # \dontrun{}
cc <- clenshaw_curtis(f, n = 64) #=> 0.0325036517151 , true error > 1.3e-10