halley.RdFinding roots of univariate functions using the Halley method.
halley(fun, x0, maxiter = 500, tol = 1e-08, ...)Well known root finding algorithms for real, univariate, continuous functions; the second derivative must be smooth, i.e. continuous. The first and second derivative are computed numerically.
Return a list with components root, f.root,
the function value at the found root, iter, the number of iterations
done, and the estimated precision estim.prec
halley(sin, 3.0) # 3.14159265358979 in 3 iterations
#> $root
#> [1] 3.141593
#>
#> $f.root
#> [1] 1.224647e-16
#>
#> $iter
#> [1] 3
#>
#> $estim.prec
#> [1] 1.841549e-11
#>
halley(function(x) x*exp(x) - 1, 1.0)
#> $root
#> [1] 0.5671433
#>
#> $f.root
#> [1] 0
#>
#> $iter
#> [1] 4
#>
#> $estim.prec
#> [1] 0
#>
# 0.567143290409784 Gauss' omega constant
# Legendre polynomial of degree 5
lp5 <- c(63, 0, -70, 0, 15, 0)/8
f <- function(x) polyval(lp5, x)
halley(f, 1.0) # 0.906179845938664
#> $root
#> [1] 0.9061798
#>
#> $f.root
#> [1] -4.440892e-16
#>
#> $iter
#> [1] 4
#>
#> $estim.prec
#> [1] 4.218847e-15
#>