householder.RdHouseholder reflections and QR decomposition
householder(A)The Householder method applies a succession of elementary unitary
matrices to the left of matrix A. These matrices are the so-called
Householder reflections.
List with two matrices Q and R, Q orthonormal and
R upper triangular, such that A=Q%*%R.
Trefethen, L. N., and D. Bau III. (1997). Numerical Linear Algebra. SIAM, Society for Industrial and Applied Mathematics, Philadelphia.
## QR decomposition
A <- matrix(c(0,-4,2, 6,-3,-2, 8,1,-1), 3, 3, byrow=TRUE)
S <- householder(A)
(Q <- S$Q); (R <- S$R)
#> [,1] [,2] [,3]
#> [1,] 0.0 -0.80 -0.60
#> [2,] -0.6 -0.48 0.64
#> [3,] -0.8 0.36 -0.48
#> [,1] [,2] [,3]
#> [1,] -10 1.000000e+00 2
#> [2,] 0 5.000000e+00 -1
#> [3,] 0 4.440892e-16 -2
Q %*% R # = A
#> [,1] [,2] [,3]
#> [1,] 0 -4 2
#> [2,] 6 -3 -2
#> [3,] 8 1 -1
## Solve an overdetermined linear system of equations
A <- matrix(c(1:8,7,4,2,3,4,2,2), ncol=3, byrow=TRUE)
S <- householder(A); Q <- S$Q; R <- S$R
m <- nrow(A); n <- ncol(A)
b <- rep(6, 5)
x <- numeric(n)
b <- t(Q) %*% b
x[n] <- b[n] / R[n, n]
for (k in (n-1):1)
x[k] <- (b[k] - R[k, (k+1):n] %*% x[(k+1):n]) / R[k, k]
qr.solve(A, rep(6, 5)); x
#> [1] 1.074236 -2.331878 2.436681
#> [1] 1.074236 -2.331878 2.436681