invlap.RdNumerical inversion of Laplace transforms.
invlap(Fs, t1, t2, nnt, a = 6, ns = 20, nd = 19)The transform Fs may be any reasonable function of a variable s^a, where a
is a real exponent. Thus, the function invlap can solve fractional
problems and invert functions Fs containing (ir)rational or transcendental
expressions.
Returns a list with components x the x-coordinates and y
the y-coordinates representing the original function in the interval
[t1,t2].
Based on a presentation in the first reference. The function invlap
on MatlabCentral (by ) served as guide. The Talbot procedure from the
second reference could be an interesting alternative.
J. Valsa and L. Brancik (1998). Approximate Formulae for Numerical Inversion of Laplace Transforms. Intern. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 11, (1998), pp. 153-166.
L.N.Trefethen, J.A.C.Weideman, and T.Schmelzer (2006). Talbot quadratures and rational approximations. BIT. Numerical Mathematics, 46(3):653–670.
Fs <- function(s) 1/(s^2 + 1) # sine function
Li <- invlap(Fs, 0, 2*pi, 100)
if (FALSE) { # \dontrun{
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) tanh(s)/s # step function
L1 <- invlap(Fs, 0.01, 20, 1000)
plot(L1[[1]], L1[[2]], type = "l", col = "blue")
L2 <- invlap(Fs, 0.01, 20, 2000, 6, 280, 59)
lines(L2[[1]], L2[[2]], col="darkred"); grid()
Fs <- function(s) 1/(sqrt(s)*s)
L1 <- invlap(Fs, 0.01, 5, 200, 6, 40, 20)
plot(L1[[1]], L1[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) 1/(s^2 - 1) # hyperbolic sine function
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) 1/s/(s + 1) # exponential approach
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
gamma <- 0.577215664901532 # Euler-Mascheroni constant
Fs <- function(s) -1/s * (log(s)+gamma) # natural logarithm
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) (20.5+3.7343*s^1.15)/(21.5+3.7343*s^1.15+0.8*s^2.2+0.5*s^0.9)/s
L1 <- invlap(Fs, 0.01, 5, 200, 6, 40, 20)
plot(L1[[1]], L1[[2]], type = "l", col = "blue")
grid()} # }