jacobian.RdJacobian matrix of a function R^n –> R^m .
jacobian(f, x0, heps = .Machine$double.eps^(1/3), ...)Computes the derivative of each funktion \(f_j\) by variable \(x_i\) separately, taking the discrete step \(h\).
Numeric m-by-n matrix J where the entry J[j, i]
is \(\frac{\partial f_j}{\partial x_i}\), i.e. the derivatives of function
\(f_j\) line up in row \(i\) for \(x_1, \ldots, x_n\).
Quarteroni, A., R. Sacco, and F. Saleri (2007). Numerical Mathematics. Second Edition, Springer-Verlag, Berlin Heidelberg.
Obviously, this function is not vectorized.
gradient