Neville's's method of polynomial interpolation.
Arguments
- x, y
x-, y-coordinates of data points defining the polynomial.
- xs
single point to be interpolated.
Details
Straightforward implementation of Neville's method; not yet vectorized.
Value
Interpolated value at xs of the polynomial defined by x,y.
References
Each textbook on numerical analysis.
Examples
p <- Poly(c(1, 2, 3))
fp <- function(x) polyval(p, x)
x <- 0:4; y <- fp(x)
xx <- linspace(0, 4, 51)
yy <- numeric(51)
for (i in 1:51) yy[i] <- neville(x, y, xx[i])
if (FALSE) { # \dontrun{
ezplot(fp, 0, 4)
points(xx, yy)} # }