psi.RdArbitrary order Polygamma function valid in the entire complex plane.
psi(k, z)Computes the Polygamma function of arbitrary order, and valid in the entire complex plane. The polygamma function is defined as
$$\psi(n, z) = \frac{d^{n+1}}{dz^{n+1}} \log(\Gamma(z))$$
If n is 0 or absent then psi will be the Digamma function.
If n=1,2,3,4,5 etc. then psi will be the
tri-, tetra-, penta-, hexa-, hepta- etc. gamma function.
Returns a complex number or a vector of complex numbers.
psi(2) - psi(1) # 1
#> [1] 1
-psi(1) # Eulers constant: 0.57721566490153 [or, -psi(0, 1)]
#> [1] 0.5772157
psi(1, 2) # pi^2/6 - 1 : 0.64493406684823
#> [1] 0.6449341
psi(10, -11.5-0.577007813568142i)
#> [1] -4.984032e-06+6.22611e-07i
# is near a root of the decagamma function