rmserr.RdCalculates different accuracy measures, most prominently RMSE.
rmserr(x, y, summary = FALSE)Calculates six different measures of accuracy for two given vectors or sequences of real numbers:
| MAE | Mean Absolute Error |
| MSE | Mean Squared Error |
| RMSE | Root Mean Squared Error |
| MAPE | Mean Absolute Percentage Error |
| LMSE | Normalized Mean Squared Error |
| rSTD | relative Standard Deviation |
Returns a list with different accuracy measures.
Gentle, J. E. (2009). Computational Statistics, section 10.3. Springer Science+Business Media LCC, New York.
Often used in Data Mining for predicting the accuracy of predictions.
x <- rep(1, 10)
y <- rnorm(10, 1, 0.1)
rmserr(x, y, summary = TRUE)
#> -- Error Terms --------------------------------------------------
#> MAE: 0.0665 - mean absolute error (in range [ 1 1 ])
#> MSE: 0.0059 - mean squared error (the variance?!)
#> RMSE: 0.0771 - root mean squared error (std. dev.)
#> MAPE: 0.0665 - mean absolute percentage error
#> LMSE: Inf - normalized mean squared error
#> rSTD: 0.0771 - relative standard deviation ( 1 )
#> -----------------------------------------------------------------