trigPoly.RdComputes the trigonometric coefficients.
trigPoly(x, m)Compute the coefficients of the trigonometric series of degree m,
$$a_0 + \sum_k(a_k \cos(k t) + b_k \sin(k t))$$
by applying orthogonality relations.
Coefficients as a list with components a0, a, and b.
Fausett, L. V. (2007). Applied Numerical Analysis Using Matlab. Second edition, Prentice Hall.
For irregular spaced data or data not covering the whole period, use standard regression techniques, see examples.
# Data available only from 0 to pi/2
t <- seq(0, pi, len=7)
x <- 0.5 + 0.25*sin(t) + 1/3*cos(t) - 1/3*sin(2*t) - 0.25*cos(2*t)
# use standard regression techniques
A <- cbind(1, cos(t), sin(t), cos(2*t), sin(2*t))
ab <- qr.solve(A, x)
ab
#> [1] 0.5000000 0.3333333 0.2500000 -0.2500000 -0.3333333
# [1] 0.5000000 0.3333333 0.2500000 -0.2500000 -0.3333333
ts <- seq(0, 2*pi, length.out = 100)
xs <- ab[1] + ab[2]*cos(ts) +
ab[3]*sin(ts) + ab[4]*cos(2*ts) +ab[5]*sin(2*ts)
if (FALSE) { # \dontrun{
# plot to make sure
plot(t, x, col = "red", xlim=c(0, 2*pi), ylim=c(-2,2),
main = "Trigonometric Regression")
lines(ts, xs, col="blue")
grid()} # }