Collect results of a fitted prodlim object in a data.frame

# S3 method for class 'prodlim'
as.data.frame(x, ...)

Arguments

x

object obtained with function prodlim

...

passed to summary.prodlim

Value

A data.table with the results of the prodlim object

Details

By default object contains results for all fitted time points and all strata. Use arguments times and newdata of summary.prodlim to subset.

See also

Author

Thomas A. Gerds <tag@biostat.ku.dk>

Examples

set.seed(8)
d <- SimCompRisk(17)
fit <- prodlim(Hist(time,event)~X1,data=d)
as.data.frame.prodlim(fit)
#>    X1      time cause n.risk n.event n.lost absolute_risk se.absolute_risk
#> 1   0 0.0000000     1     10       0      0     0.0000000        0.0000000
#> 2   0 0.4901679     1     10       0      1     0.0000000        0.0000000
#> 3   0 1.6077992     1      9       0      0     0.0000000        0.0000000
#> 4   0 2.6119345     1      9       0      0     0.0000000        0.0000000
#> 5   0 3.3086838     1      9       0      0     0.0000000        0.0000000
#> 6   0 3.7273358     1      8       0      0     0.0000000        0.0000000
#> 7   0 3.8235389     1      7       0      0     0.0000000        0.0000000
#> 8   0 3.8574973     1      7       0      1     0.0000000        0.0000000
#> 9   0 4.2717747     1      6       0      0     0.0000000        0.0000000
#> 10  0 4.5278894     1      6       0      0     0.0000000        0.0000000
#> 11  0 4.7128412     1      5       0      0     0.0000000        0.0000000
#> 12  0 5.6507783     1      4       0      0     0.0000000        0.0000000
#> 13  0 5.8048164     1      4       0      0     0.0000000        0.0000000
#> 14  0 6.2343624     1      4       0      0     0.0000000        0.0000000
#> 15  0 6.3170850     1      3       1      0     0.1296296        0.1205681
#> 16  0 6.3773456     1      2       0      0     0.1296296        0.1205681
#> 17  0 6.6145672     1      2       1      0     0.2592593        0.1566491
#> 18  0 6.9834973     1      1       0      0     0.2592593              NaN
#> 19  1 0.0000000     1      7       0      0     0.0000000        0.0000000
#> 20  1 0.4901679     1      7       0      0     0.0000000        0.0000000
#> 21  1 1.6077992     1      7       0      1     0.0000000        0.0000000
#> 22  1 2.6119345     1      6       0      1     0.0000000        0.0000000
#> 23  1 3.3086838     1      5       0      0     0.0000000        0.0000000
#> 24  1 3.7273358     1      5       0      0     0.0000000        0.0000000
#> 25  1 3.8235389     1      5       1      0     0.2000000        0.1788854
#> 26  1 3.8574973     1      4       0      0     0.2000000        0.1788854
#> 27  1 4.2717747     1      4       1      0     0.4000000        0.2190890
#> 28  1 4.5278894     1      3       0      0     0.4000000        0.2190890
#> 29  1 4.7128412     1      3       0      0     0.4000000        0.2190890
#> 30  1 5.6507783     1      3       0      1     0.4000000        0.2190890
#> 31  1 5.8048164     1      2       1      0     0.7000000        0.2387467
#> 32  1 6.2343624     1      1       0      0     0.7000000        0.2387467
#> 33  1 6.3170850     1      1       0      0     0.7000000        0.2387467
#> 34  1 6.3773456     1      1       0      0     0.7000000              NaN
#> 35  1 6.6145672     1      0       0      0            NA               NA
#> 36  1 6.9834973     1      0       0      0            NA               NA
#> 37  0 0.0000000     2     10       0      0     0.0000000        0.0000000
#> 38  0 0.4901679     2     10       0      1     0.0000000        0.0000000
#> 39  0 1.6077992     2      9       0      0     0.0000000        0.0000000
#> 40  0 2.6119345     2      9       0      0     0.0000000        0.0000000
#> 41  0 3.3086838     2      9       1      0     0.1111111        0.1047566
#> 42  0 3.7273358     2      8       1      0     0.2222222        0.1385799
#> 43  0 3.8235389     2      7       0      0     0.2222222        0.1385799
#> 44  0 3.8574973     2      7       0      1     0.2222222        0.1385799
#> 45  0 4.2717747     2      6       0      0     0.2222222        0.1385799
#> 46  0 4.5278894     2      6       1      0     0.3518519        0.1653469
#> 47  0 4.7128412     2      5       1      0     0.4814815        0.1758988
#> 48  0 5.6507783     2      4       0      0     0.4814815        0.1758988
#> 49  0 5.8048164     2      4       0      0     0.4814815        0.1758988
#> 50  0 6.2343624     2      4       1      0     0.6111111        0.1732249
#> 51  0 6.3170850     2      3       0      0     0.6111111        0.1732249
#> 52  0 6.3773456     2      2       0      0     0.6111111        0.1732249
#> 53  0 6.6145672     2      2       0      0     0.6111111        0.1732249
#> 54  0 6.9834973     2      1       1      0     0.7407407              NaN
#> 55  1 0.0000000     2      7       0      0     0.0000000        0.0000000
#> 56  1 0.4901679     2      7       0      0     0.0000000        0.0000000
#> 57  1 1.6077992     2      7       0      1     0.0000000        0.0000000
#> 58  1 2.6119345     2      6       0      1     0.0000000        0.0000000
#> 59  1 3.3086838     2      5       0      0     0.0000000        0.0000000
#> 60  1 3.7273358     2      5       0      0     0.0000000        0.0000000
#> 61  1 3.8235389     2      5       0      0     0.0000000        0.0000000
#> 62  1 3.8574973     2      4       0      0     0.0000000        0.0000000
#> 63  1 4.2717747     2      4       0      0     0.0000000        0.0000000
#> 64  1 4.5278894     2      3       0      0     0.0000000        0.0000000
#> 65  1 4.7128412     2      3       0      0     0.0000000        0.0000000
#> 66  1 5.6507783     2      3       0      1     0.0000000        0.0000000
#> 67  1 5.8048164     2      2       0      0     0.0000000        0.0000000
#> 68  1 6.2343624     2      1       0      0     0.0000000        0.0000000
#> 69  1 6.3170850     2      1       0      0     0.0000000        0.0000000
#> 70  1 6.3773456     2      1       1      0     0.3000000              NaN
#> 71  1 6.6145672     2      0       0      0            NA               NA
#> 72  1 6.9834973     2      0       0      0            NA               NA
#>         lower     upper
#> 1  0.00000000 0.0000000
#> 2  0.00000000 0.0000000
#> 3  0.00000000 0.0000000
#> 4  0.00000000 0.0000000
#> 5  0.00000000 0.0000000
#> 6  0.00000000 0.0000000
#> 7  0.00000000 0.0000000
#> 8  0.00000000 0.0000000
#> 9  0.00000000 0.0000000
#> 10 0.00000000 0.0000000
#> 11 0.00000000 0.0000000
#> 12 0.00000000 0.0000000
#> 13 0.00000000 0.0000000
#> 14 0.00000000 0.0000000
#> 15 0.00000000 0.3659387
#> 16 0.00000000 0.3659387
#> 17 0.00000000 0.5662859
#> 18        NaN       NaN
#> 19 0.00000000 0.0000000
#> 20 0.00000000 0.0000000
#> 21 0.00000000 0.0000000
#> 22 0.00000000 0.0000000
#> 23 0.00000000 0.0000000
#> 24 0.00000000 0.0000000
#> 25 0.00000000 0.5506090
#> 26 0.00000000 0.5506090
#> 27 0.00000000 0.8294066
#> 28 0.00000000 0.8294066
#> 29 0.00000000 0.8294066
#> 30 0.00000000 0.8294066
#> 31 0.23206501 1.0000000
#> 32 0.23206501 1.0000000
#> 33 0.23206501 1.0000000
#> 34        NaN       NaN
#> 35         NA        NA
#> 36         NA        NA
#> 37 0.00000000 0.0000000
#> 38 0.00000000 0.0000000
#> 39 0.00000000 0.0000000
#> 40 0.00000000 0.0000000
#> 41 0.00000000 0.3164302
#> 42 0.00000000 0.4938338
#> 43 0.00000000 0.4938338
#> 44 0.00000000 0.4938338
#> 45 0.00000000 0.4938338
#> 46 0.02777797 0.6759257
#> 47 0.13672607 0.8262369
#> 48 0.13672607 0.8262369
#> 49 0.13672607 0.8262369
#> 50 0.27159659 0.9506256
#> 51 0.27159659 0.9506256
#> 52 0.27159659 0.9506256
#> 53 0.27159659 0.9506256
#> 54        NaN       NaN
#> 55 0.00000000 0.0000000
#> 56 0.00000000 0.0000000
#> 57 0.00000000 0.0000000
#> 58 0.00000000 0.0000000
#> 59 0.00000000 0.0000000
#> 60 0.00000000 0.0000000
#> 61 0.00000000 0.0000000
#> 62 0.00000000 0.0000000
#> 63 0.00000000 0.0000000
#> 64 0.00000000 0.0000000
#> 65 0.00000000 0.0000000
#> 66 0.00000000 0.0000000
#> 67 0.00000000 0.0000000
#> 68 0.00000000 0.0000000
#> 69 0.00000000 0.0000000
#> 70        NaN       NaN
#> 71         NA        NA
#> 72         NA        NA
as.data.frame.prodlim(fit)
#>    X1      time cause n.risk n.event n.lost absolute_risk se.absolute_risk
#> 1   0 0.0000000     1     10       0      0     0.0000000        0.0000000
#> 2   0 0.4901679     1     10       0      1     0.0000000        0.0000000
#> 3   0 1.6077992     1      9       0      0     0.0000000        0.0000000
#> 4   0 2.6119345     1      9       0      0     0.0000000        0.0000000
#> 5   0 3.3086838     1      9       0      0     0.0000000        0.0000000
#> 6   0 3.7273358     1      8       0      0     0.0000000        0.0000000
#> 7   0 3.8235389     1      7       0      0     0.0000000        0.0000000
#> 8   0 3.8574973     1      7       0      1     0.0000000        0.0000000
#> 9   0 4.2717747     1      6       0      0     0.0000000        0.0000000
#> 10  0 4.5278894     1      6       0      0     0.0000000        0.0000000
#> 11  0 4.7128412     1      5       0      0     0.0000000        0.0000000
#> 12  0 5.6507783     1      4       0      0     0.0000000        0.0000000
#> 13  0 5.8048164     1      4       0      0     0.0000000        0.0000000
#> 14  0 6.2343624     1      4       0      0     0.0000000        0.0000000
#> 15  0 6.3170850     1      3       1      0     0.1296296        0.1205681
#> 16  0 6.3773456     1      2       0      0     0.1296296        0.1205681
#> 17  0 6.6145672     1      2       1      0     0.2592593        0.1566491
#> 18  0 6.9834973     1      1       0      0     0.2592593              NaN
#> 19  1 0.0000000     1      7       0      0     0.0000000        0.0000000
#> 20  1 0.4901679     1      7       0      0     0.0000000        0.0000000
#> 21  1 1.6077992     1      7       0      1     0.0000000        0.0000000
#> 22  1 2.6119345     1      6       0      1     0.0000000        0.0000000
#> 23  1 3.3086838     1      5       0      0     0.0000000        0.0000000
#> 24  1 3.7273358     1      5       0      0     0.0000000        0.0000000
#> 25  1 3.8235389     1      5       1      0     0.2000000        0.1788854
#> 26  1 3.8574973     1      4       0      0     0.2000000        0.1788854
#> 27  1 4.2717747     1      4       1      0     0.4000000        0.2190890
#> 28  1 4.5278894     1      3       0      0     0.4000000        0.2190890
#> 29  1 4.7128412     1      3       0      0     0.4000000        0.2190890
#> 30  1 5.6507783     1      3       0      1     0.4000000        0.2190890
#> 31  1 5.8048164     1      2       1      0     0.7000000        0.2387467
#> 32  1 6.2343624     1      1       0      0     0.7000000        0.2387467
#> 33  1 6.3170850     1      1       0      0     0.7000000        0.2387467
#> 34  1 6.3773456     1      1       0      0     0.7000000              NaN
#> 35  1 6.6145672     1      0       0      0            NA               NA
#> 36  1 6.9834973     1      0       0      0            NA               NA
#> 37  0 0.0000000     2     10       0      0     0.0000000        0.0000000
#> 38  0 0.4901679     2     10       0      1     0.0000000        0.0000000
#> 39  0 1.6077992     2      9       0      0     0.0000000        0.0000000
#> 40  0 2.6119345     2      9       0      0     0.0000000        0.0000000
#> 41  0 3.3086838     2      9       1      0     0.1111111        0.1047566
#> 42  0 3.7273358     2      8       1      0     0.2222222        0.1385799
#> 43  0 3.8235389     2      7       0      0     0.2222222        0.1385799
#> 44  0 3.8574973     2      7       0      1     0.2222222        0.1385799
#> 45  0 4.2717747     2      6       0      0     0.2222222        0.1385799
#> 46  0 4.5278894     2      6       1      0     0.3518519        0.1653469
#> 47  0 4.7128412     2      5       1      0     0.4814815        0.1758988
#> 48  0 5.6507783     2      4       0      0     0.4814815        0.1758988
#> 49  0 5.8048164     2      4       0      0     0.4814815        0.1758988
#> 50  0 6.2343624     2      4       1      0     0.6111111        0.1732249
#> 51  0 6.3170850     2      3       0      0     0.6111111        0.1732249
#> 52  0 6.3773456     2      2       0      0     0.6111111        0.1732249
#> 53  0 6.6145672     2      2       0      0     0.6111111        0.1732249
#> 54  0 6.9834973     2      1       1      0     0.7407407              NaN
#> 55  1 0.0000000     2      7       0      0     0.0000000        0.0000000
#> 56  1 0.4901679     2      7       0      0     0.0000000        0.0000000
#> 57  1 1.6077992     2      7       0      1     0.0000000        0.0000000
#> 58  1 2.6119345     2      6       0      1     0.0000000        0.0000000
#> 59  1 3.3086838     2      5       0      0     0.0000000        0.0000000
#> 60  1 3.7273358     2      5       0      0     0.0000000        0.0000000
#> 61  1 3.8235389     2      5       0      0     0.0000000        0.0000000
#> 62  1 3.8574973     2      4       0      0     0.0000000        0.0000000
#> 63  1 4.2717747     2      4       0      0     0.0000000        0.0000000
#> 64  1 4.5278894     2      3       0      0     0.0000000        0.0000000
#> 65  1 4.7128412     2      3       0      0     0.0000000        0.0000000
#> 66  1 5.6507783     2      3       0      1     0.0000000        0.0000000
#> 67  1 5.8048164     2      2       0      0     0.0000000        0.0000000
#> 68  1 6.2343624     2      1       0      0     0.0000000        0.0000000
#> 69  1 6.3170850     2      1       0      0     0.0000000        0.0000000
#> 70  1 6.3773456     2      1       1      0     0.3000000              NaN
#> 71  1 6.6145672     2      0       0      0            NA               NA
#> 72  1 6.9834973     2      0       0      0            NA               NA
#>         lower     upper
#> 1  0.00000000 0.0000000
#> 2  0.00000000 0.0000000
#> 3  0.00000000 0.0000000
#> 4  0.00000000 0.0000000
#> 5  0.00000000 0.0000000
#> 6  0.00000000 0.0000000
#> 7  0.00000000 0.0000000
#> 8  0.00000000 0.0000000
#> 9  0.00000000 0.0000000
#> 10 0.00000000 0.0000000
#> 11 0.00000000 0.0000000
#> 12 0.00000000 0.0000000
#> 13 0.00000000 0.0000000
#> 14 0.00000000 0.0000000
#> 15 0.00000000 0.3659387
#> 16 0.00000000 0.3659387
#> 17 0.00000000 0.5662859
#> 18        NaN       NaN
#> 19 0.00000000 0.0000000
#> 20 0.00000000 0.0000000
#> 21 0.00000000 0.0000000
#> 22 0.00000000 0.0000000
#> 23 0.00000000 0.0000000
#> 24 0.00000000 0.0000000
#> 25 0.00000000 0.5506090
#> 26 0.00000000 0.5506090
#> 27 0.00000000 0.8294066
#> 28 0.00000000 0.8294066
#> 29 0.00000000 0.8294066
#> 30 0.00000000 0.8294066
#> 31 0.23206501 1.0000000
#> 32 0.23206501 1.0000000
#> 33 0.23206501 1.0000000
#> 34        NaN       NaN
#> 35         NA        NA
#> 36         NA        NA
#> 37 0.00000000 0.0000000
#> 38 0.00000000 0.0000000
#> 39 0.00000000 0.0000000
#> 40 0.00000000 0.0000000
#> 41 0.00000000 0.3164302
#> 42 0.00000000 0.4938338
#> 43 0.00000000 0.4938338
#> 44 0.00000000 0.4938338
#> 45 0.00000000 0.4938338
#> 46 0.02777797 0.6759257
#> 47 0.13672607 0.8262369
#> 48 0.13672607 0.8262369
#> 49 0.13672607 0.8262369
#> 50 0.27159659 0.9506256
#> 51 0.27159659 0.9506256
#> 52 0.27159659 0.9506256
#> 53 0.27159659 0.9506256
#> 54        NaN       NaN
#> 55 0.00000000 0.0000000
#> 56 0.00000000 0.0000000
#> 57 0.00000000 0.0000000
#> 58 0.00000000 0.0000000
#> 59 0.00000000 0.0000000
#> 60 0.00000000 0.0000000
#> 61 0.00000000 0.0000000
#> 62 0.00000000 0.0000000
#> 63 0.00000000 0.0000000
#> 64 0.00000000 0.0000000
#> 65 0.00000000 0.0000000
#> 66 0.00000000 0.0000000
#> 67 0.00000000 0.0000000
#> 68 0.00000000 0.0000000
#> 69 0.00000000 0.0000000
#> 70        NaN       NaN
#> 71         NA        NA
#> 72         NA        NA