Collect results of a fitted prodlim object in a data.table

# S3 method for class 'prodlim'
as.data.table(x, keep.rownames = FALSE, ...)

Arguments

x

object obtained with function prodlim

keep.rownames

Not used

...

passed to summary.prodlim

Value

A data.table with the results of the prodlim object

Details

By default object contains results for all fitted time points and all strata. Use arguments times and newdata of summary.prodlim to subset.

See also

Author

Thomas A. Gerds <tag@biostat.ku.dk>

Examples

library(data.table)
set.seed(8)
d <- SimCompRisk(17)
fit <- prodlim(Hist(time,event)~X1,data=d)
as.data.table(fit)
#>        X1      time  cause n.risk n.event n.lost absolute_risk se.absolute_risk
#>     <num>     <num> <char>  <int>   <int>  <int>         <num>            <num>
#>  1:     0 0.0000000      1     10       0      0     0.0000000        0.0000000
#>  2:     0 0.4901679      1     10       0      1     0.0000000        0.0000000
#>  3:     0 1.6077992      1      9       0      0     0.0000000        0.0000000
#>  4:     0 2.6119345      1      9       0      0     0.0000000        0.0000000
#>  5:     0 3.3086838      1      9       0      0     0.0000000        0.0000000
#>  6:     0 3.7273358      1      8       0      0     0.0000000        0.0000000
#>  7:     0 3.8235389      1      7       0      0     0.0000000        0.0000000
#>  8:     0 3.8574973      1      7       0      1     0.0000000        0.0000000
#>  9:     0 4.2717747      1      6       0      0     0.0000000        0.0000000
#> 10:     0 4.5278894      1      6       0      0     0.0000000        0.0000000
#> 11:     0 4.7128412      1      5       0      0     0.0000000        0.0000000
#> 12:     0 5.6507783      1      4       0      0     0.0000000        0.0000000
#> 13:     0 5.8048164      1      4       0      0     0.0000000        0.0000000
#> 14:     0 6.2343624      1      4       0      0     0.0000000        0.0000000
#> 15:     0 6.3170850      1      3       1      0     0.1296296        0.1205681
#> 16:     0 6.3773456      1      2       0      0     0.1296296        0.1205681
#> 17:     0 6.6145672      1      2       1      0     0.2592593        0.1566491
#> 18:     0 6.9834973      1      1       0      0     0.2592593              NaN
#> 19:     1 0.0000000      1      7       0      0     0.0000000        0.0000000
#> 20:     1 0.4901679      1      7       0      0     0.0000000        0.0000000
#> 21:     1 1.6077992      1      7       0      1     0.0000000        0.0000000
#> 22:     1 2.6119345      1      6       0      1     0.0000000        0.0000000
#> 23:     1 3.3086838      1      5       0      0     0.0000000        0.0000000
#> 24:     1 3.7273358      1      5       0      0     0.0000000        0.0000000
#> 25:     1 3.8235389      1      5       1      0     0.2000000        0.1788854
#> 26:     1 3.8574973      1      4       0      0     0.2000000        0.1788854
#> 27:     1 4.2717747      1      4       1      0     0.4000000        0.2190890
#> 28:     1 4.5278894      1      3       0      0     0.4000000        0.2190890
#> 29:     1 4.7128412      1      3       0      0     0.4000000        0.2190890
#> 30:     1 5.6507783      1      3       0      1     0.4000000        0.2190890
#> 31:     1 5.8048164      1      2       1      0     0.7000000        0.2387467
#> 32:     1 6.2343624      1      1       0      0     0.7000000        0.2387467
#> 33:     1 6.3170850      1      1       0      0     0.7000000        0.2387467
#> 34:     1 6.3773456      1      1       0      0     0.7000000              NaN
#> 35:     1 6.6145672      1      0       0      0            NA               NA
#> 36:     1 6.9834973      1      0       0      0            NA               NA
#> 37:     0 0.0000000      2     10       0      0     0.0000000        0.0000000
#> 38:     0 0.4901679      2     10       0      1     0.0000000        0.0000000
#> 39:     0 1.6077992      2      9       0      0     0.0000000        0.0000000
#> 40:     0 2.6119345      2      9       0      0     0.0000000        0.0000000
#> 41:     0 3.3086838      2      9       1      0     0.1111111        0.1047566
#> 42:     0 3.7273358      2      8       1      0     0.2222222        0.1385799
#> 43:     0 3.8235389      2      7       0      0     0.2222222        0.1385799
#> 44:     0 3.8574973      2      7       0      1     0.2222222        0.1385799
#> 45:     0 4.2717747      2      6       0      0     0.2222222        0.1385799
#> 46:     0 4.5278894      2      6       1      0     0.3518519        0.1653469
#> 47:     0 4.7128412      2      5       1      0     0.4814815        0.1758988
#> 48:     0 5.6507783      2      4       0      0     0.4814815        0.1758988
#> 49:     0 5.8048164      2      4       0      0     0.4814815        0.1758988
#> 50:     0 6.2343624      2      4       1      0     0.6111111        0.1732249
#> 51:     0 6.3170850      2      3       0      0     0.6111111        0.1732249
#> 52:     0 6.3773456      2      2       0      0     0.6111111        0.1732249
#> 53:     0 6.6145672      2      2       0      0     0.6111111        0.1732249
#> 54:     0 6.9834973      2      1       1      0     0.7407407              NaN
#> 55:     1 0.0000000      2      7       0      0     0.0000000        0.0000000
#> 56:     1 0.4901679      2      7       0      0     0.0000000        0.0000000
#> 57:     1 1.6077992      2      7       0      1     0.0000000        0.0000000
#> 58:     1 2.6119345      2      6       0      1     0.0000000        0.0000000
#> 59:     1 3.3086838      2      5       0      0     0.0000000        0.0000000
#> 60:     1 3.7273358      2      5       0      0     0.0000000        0.0000000
#> 61:     1 3.8235389      2      5       0      0     0.0000000        0.0000000
#> 62:     1 3.8574973      2      4       0      0     0.0000000        0.0000000
#> 63:     1 4.2717747      2      4       0      0     0.0000000        0.0000000
#> 64:     1 4.5278894      2      3       0      0     0.0000000        0.0000000
#> 65:     1 4.7128412      2      3       0      0     0.0000000        0.0000000
#> 66:     1 5.6507783      2      3       0      1     0.0000000        0.0000000
#> 67:     1 5.8048164      2      2       0      0     0.0000000        0.0000000
#> 68:     1 6.2343624      2      1       0      0     0.0000000        0.0000000
#> 69:     1 6.3170850      2      1       0      0     0.0000000        0.0000000
#> 70:     1 6.3773456      2      1       1      0     0.3000000              NaN
#> 71:     1 6.6145672      2      0       0      0            NA               NA
#> 72:     1 6.9834973      2      0       0      0            NA               NA
#>        X1      time  cause n.risk n.event n.lost absolute_risk se.absolute_risk
#>          lower     upper
#>          <num>     <num>
#>  1: 0.00000000 0.0000000
#>  2: 0.00000000 0.0000000
#>  3: 0.00000000 0.0000000
#>  4: 0.00000000 0.0000000
#>  5: 0.00000000 0.0000000
#>  6: 0.00000000 0.0000000
#>  7: 0.00000000 0.0000000
#>  8: 0.00000000 0.0000000
#>  9: 0.00000000 0.0000000
#> 10: 0.00000000 0.0000000
#> 11: 0.00000000 0.0000000
#> 12: 0.00000000 0.0000000
#> 13: 0.00000000 0.0000000
#> 14: 0.00000000 0.0000000
#> 15: 0.00000000 0.3659387
#> 16: 0.00000000 0.3659387
#> 17: 0.00000000 0.5662859
#> 18:        NaN       NaN
#> 19: 0.00000000 0.0000000
#> 20: 0.00000000 0.0000000
#> 21: 0.00000000 0.0000000
#> 22: 0.00000000 0.0000000
#> 23: 0.00000000 0.0000000
#> 24: 0.00000000 0.0000000
#> 25: 0.00000000 0.5506090
#> 26: 0.00000000 0.5506090
#> 27: 0.00000000 0.8294066
#> 28: 0.00000000 0.8294066
#> 29: 0.00000000 0.8294066
#> 30: 0.00000000 0.8294066
#> 31: 0.23206501 1.0000000
#> 32: 0.23206501 1.0000000
#> 33: 0.23206501 1.0000000
#> 34:        NaN       NaN
#> 35:         NA        NA
#> 36:         NA        NA
#> 37: 0.00000000 0.0000000
#> 38: 0.00000000 0.0000000
#> 39: 0.00000000 0.0000000
#> 40: 0.00000000 0.0000000
#> 41: 0.00000000 0.3164302
#> 42: 0.00000000 0.4938338
#> 43: 0.00000000 0.4938338
#> 44: 0.00000000 0.4938338
#> 45: 0.00000000 0.4938338
#> 46: 0.02777797 0.6759257
#> 47: 0.13672607 0.8262369
#> 48: 0.13672607 0.8262369
#> 49: 0.13672607 0.8262369
#> 50: 0.27159659 0.9506256
#> 51: 0.27159659 0.9506256
#> 52: 0.27159659 0.9506256
#> 53: 0.27159659 0.9506256
#> 54:        NaN       NaN
#> 55: 0.00000000 0.0000000
#> 56: 0.00000000 0.0000000
#> 57: 0.00000000 0.0000000
#> 58: 0.00000000 0.0000000
#> 59: 0.00000000 0.0000000
#> 60: 0.00000000 0.0000000
#> 61: 0.00000000 0.0000000
#> 62: 0.00000000 0.0000000
#> 63: 0.00000000 0.0000000
#> 64: 0.00000000 0.0000000
#> 65: 0.00000000 0.0000000
#> 66: 0.00000000 0.0000000
#> 67: 0.00000000 0.0000000
#> 68: 0.00000000 0.0000000
#> 69: 0.00000000 0.0000000
#> 70:        NaN       NaN
#> 71:         NA        NA
#> 72:         NA        NA
#>          lower     upper