R/redist.R
redist.Rd
Calculation of Efron's re-distribution to the right algorithm to obtain the Kaplan-Meier estimate.
redist(time, status)
Calculations needed to
prodlim
redist(time=c(.35,0.4,.51,.51,.7,.73),status=c(0,1,1,0,0,1))
#>
#> Kaplan-Meier estimate via re-distribution to the right algorithm:
#>
#> Subject 1:
#> ---------------------------
#> Survival before = 100%
#> No event until time = 0.35
#> Re-distribute mass 0.17 to remaining 5 subjects
#> Survival after = 100%
#>
#> Subject 2:
#> ---------------------------
#> Survival before = 100%
#> Event at time = 0.4
#> Contribution to Kaplan-Meier estimate:
#>
#> fractions decimal
#> own contribution 1/6 0.16667
#> from subject 1 1/6*1/5 0.03333
#> sum 0.2000
#>
#> Survival after = 100% - (1/6 + 1/6*1/5)
#> = 100% - 20% = 80%
#>
#> Subject 3:
#> ---------------------------
#> Survival before = 80%
#> Event at time = 0.51
#> Contribution to Kaplan-Meier estimate:
#>
#> fractions decimal
#> own contribution 1/6 0.16667
#> from subject 1 1/6*1/5 0.03333
#> sum 0.2000
#>
#> Survival after = 80% - (1/6 + 1/6*1/5)
#> = 80% - 20% = 60%
#>
#> Subject 4:
#> ---------------------------
#> Survival before = 60%
#> No event until time = 0.51
#> Re-distribute mass 0.2 to remaining 2 subjects
#> Survival after = 60%
#>
#> Subject 5:
#> ---------------------------
#> Survival before = 60%
#> No event until time = 0.7
#> Re-distribute mass 0.3 to remaining 1 subject
#> Survival after = 60%
#>
#> Subject 6:
#> ---------------------------
#> Survival before = 60%
#> Event at time = 0.73
#> Contribution to Kaplan-Meier estimate:
#>
#> fractions decimal
#> own contribution 1/6 0.16667
#> from subject 1 1/6*1/5 0.03333
#> from subject 4 1/6*1/2 0.08333
#> 1/6*1/5*1/2 0.01667
#> from subject 5 1/6*1/1 0.16667
#> 1/6*1/5*1/1 0.03333
#> 1/6*1/2*1/1 0.08333
#> 1/6*1/5*1/2*1/1 0.01667
#> sum 0.6000
#>
#> Survival after = 60% - (1/6 + 1/6*1/5 + 1/6*1/2 + 1/6*1/5*1/2 + 1/6*1/1 + 1/6*1/5*1/1 + 1/6*1/2*1/1 + 1/6*1/5*1/2*1/1)
#> = 60% - 60% = 0%
#>
#> Summary table:
#>
#> NULL