generic.binom.test.RdCalculates power for the generic binomial test with (optional) Type 1 and Type 2 error plots.
power.binom.test(size, prob, null.prob = 0.5, alpha = 0.05,
alternative = c("two.sided", "one.sided", "two.one.sided"),
plot = TRUE, verbose = TRUE, pretty = FALSE)number of trials (zero or more).
probability of success on each trial under alternative.
probability of success on each trial under null.
type 1 error rate, defined as the probability of incorrectly rejecting a true null hypothesis, denoted as \(\alpha\).
direction or type of the hypothesis test: "two.sided", "one.sided", or "two.one.sided". For non-inferiority or superiority tests, add or subtract the margin from the null hypothesis value and use alternative = "one.sided".
logical; FALSE switches off Type 1 and Type 2 error plot. TRUE by default.
logical; whether the output should be printed on the console. TRUE by default.
logical; whether the output should show Unicode characters (if encoding allows for it). FALSE by default.
number of trials (zero or more).
probability of success on each trial under alternative.
probability of success on each trial under null.
critical value(s).
statistical power \((1-\beta)\).
# one-sided
power.binom.test(size = 200, prob = 0.6, null.prob = 0.5,
alpha = 0.05, alternative = "one.sided")
#> +--------------------------------------------------+
#> | POWER CALCULATION |
#> +--------------------------------------------------+
#>
#> Generic Binomial Test
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : prob <= null.prob
#> H1 (Alt. Claim) : prob > null.prob
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Type 1 Error (alpha) = 0.038
#> Type 2 Error (beta) = 0.140
#> Statistical Power = 0.86 <<
#>
# two-sided
power.binom.test(size = 200, prob = 0.4, null.prob = 0.5,
alpha = 0.05, alternative = "two.sided")
#> +--------------------------------------------------+
#> | POWER CALCULATION |
#> +--------------------------------------------------+
#>
#> Generic Binomial Test
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : prob = null.prob
#> H1 (Alt. Claim) : prob != null.prob
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Type 1 Error (alpha) = 0.040
#> Type 2 Error (beta) = 0.213
#> Statistical Power = 0.787 <<
#>
# equivalence
power.binom.test(size = 200, prob = 0.5, null.prob = c(0.4, 0.6),
alpha = 0.05, alternative = "two.one.sided")
#> +--------------------------------------------------+
#> | POWER CALCULATION |
#> +--------------------------------------------------+
#>
#> Generic Binomial Test
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : prob <= min(null.prob) or
#> prob >= max(null.prob)
#> H1 (Alt. Claim) : prob > min(null.prob) and
#> prob < max(null.prob)
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Type 1 Error (alpha) = 0.049
#> Type 2 Error (beta) = 0.229
#> Statistical Power = 0.771 <<
#>