proportions.twoprops.RdCalculates power or sample size (only one can be NULL at a time) for two proportions using normal approximation method.
Validated via G*Power and PASS documentation.
NOTE: The pwrss.z.2props() function is deprecated, but it will remain available as a wrapper for the power.z.twoprops() function during the transition period.
power.z.twoprops(prob1, prob2, margin = 0,
n2 = NULL, n.ratio = 1,
power = NULL, alpha = 0.05,
alternative = c("two.sided", "one.sided", "two.one.sided"),
arcsine = FALSE, correct = FALSE,
paired = FALSE, rho.paired = 0.50,
std.error = c("pooled", "unpooled"),
ceiling = TRUE, verbose = TRUE, pretty = FALSE)
power.exact.twoprops(prob1, prob2, n2 = NULL, n.ratio = 1,
power = NULL, alpha = 0.05,
alternative = c("two.sided", "one.sided"),
paired = FALSE, rho.paired = 0.50,
method = c("exact", "approximate"),
ceiling = TRUE, verbose = TRUE, pretty = FALSE)probability of success in the first group.
probability of success in the second group.
ignorable prob1 - prob2 difference. For two one-sided tests provide lower and upper margins in the form of c(lower, upper).
integer; sample size for the second group.
sample size ratio (n1 / n2).
statistical power, defined as the probability of correctly rejecting a false null hypothesis, denoted as \(1 - \beta\).
type 1 error rate, defined as the probability of incorrectly rejecting a true null hypothesis, denoted as \(\alpha\).
logical; if TRUE samples are paired. FALSE by default.
correlation between paired observations.
character; whether to use "approximate" or "exact" method. Default is "exact" (only in the power.exact.twoprops() function).
logical; whether arcsine transformation should be applied. Note that this only applies to independent proportions without continuity correction.
logical; whether Yates' continuity correction should be applied to the test statistic. Ignored for the paired test.
character; whether to calculate standard error using "pooled" or "unpooled" standard deviation. Ignored for the paired test.
character; direction or type of the hypothesis test: "two.sided", "one.sided", or "two.one.sided".
logical; TRUE rounds up sample size in each group.
logical; TRUE prints the output on the console.
logical; whether the output should show Unicode characters (if encoding allows for it). FALSE by default.
list of parameters used in calculation.
type of the test, which is "z" or "exact".
statistical power \((1-\beta)\).
mean of the alternative distribution.
standard deviation of the alternative distribution.
mean of the null distribution.
standard deviation of the null distribution.
critical value(s).
sample size in the form of c(n1, n2) (applies to independent proportions).
total sample size (applies to independent proportions).
paired sample size (applies to paired proportions).
Bulus, M., & Polat, C. (2023). pwrss R paketi ile istatistiksel guc analizi [Statistical power analysis with pwrss R package]. Ahi Evran Universitesi Kirsehir Egitim Fakultesi Dergisi, 24(3), 2207-2328. doi:10.29299/kefad.1209913
# power
power.z.twoprops(prob1 = 0.65, prob2 = 0.60,
alpha = 0.05, n2 = 500,
alternative = "one.sided")
#> +--------------------------------------------------+
#> | POWER CALCULATION |
#> +--------------------------------------------------+
#>
#> Independent Proportions
#>
#> Method : Normal Approximation
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : prob1 - prob2 <= 0
#> H1 (Alt. Claim) : prob1 - prob2 > 0
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Sample Size = 500 and 500
#> Type 1 Error (alpha) = 0.050
#> Type 2 Error (beta) = 0.505
#> Statistical Power = 0.495 <<
#>
# sample size
power.z.twoprops(prob1 = 0.65, prob2 = 0.60,
alpha = 0.05, power = 0.80,
alternative = "one.sided")
#> +--------------------------------------------------+
#> | SAMPLE SIZE CALCULATION |
#> +--------------------------------------------------+
#>
#> Independent Proportions
#>
#> Method : Normal Approximation
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : prob1 - prob2 <= 0
#> H1 (Alt. Claim) : prob1 - prob2 > 0
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Sample Size = 1159 and 1159 <<
#> Type 1 Error (alpha) = 0.050
#> Type 2 Error (beta) = 0.200
#> Statistical Power = 0.8
#>